Denis Meledin
Chalmers University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denis Meledin.
Astronomy and Astrophysics | 2008
Vessen Vassilev; Denis Meledin; Igor Lapkin; Victor Belitsky; Olle Nyström; Doug Henke; Alexey Pavolotsky; Raquel Monje; Christophe Risacher; Michael Olberg; Magnus Strandberg; Erik Sundin; Mathias Fredrixon; Sven-Erik Ferm; Vincent Desmaris; Dimitar Dochev; Miroslav Pantaleev; Per Bergman; Hans Olofsson
Aims. In March 2008, the APEX facility instrument was installed on the telescope at the site of Lliano Chajnantor in northern Chile. The main objective of the paper is to introduce the new instrument to the radio astronomical community. It describes the hardware configuration and presents some initial results from the on-sky commissioning. Methods. The heterodyne instrument covers frequencies between 211 GHz and 1390 GHz divided into four bands. The first three bands are sideband-separating mixers operating in a single sideband mode and based on superconductor-insulator-superconductor (SIS) tunnel junctions. The fourth band is a hot-electron bolometer, waveguide balanced mixer. All bands are integrated in a closedcycle temperature-stabilized cryostat and are cooled to 4 K. Results. We present results from noise temperature, sideband separation ratios, beam, and stability measurements performed on the telescope as a part of the receiver technical commissioning. Examples of broad extragalactic lines are also included.
IEEE Transactions on Microwave Theory and Techniques | 2009
Denis Meledin; Alexey Pavolotsky; Vincent Desmaris; Igor Lapkin; Christophe Risacher; Victor Perez; Douglas Henke; Olle Nyström; Erik Sundin; Dimitar Dochev; Miroslav Pantaleev; Mathias Fredrixon; Magnus Strandberg; B. Voronov; Gregory N. Goltsman; Victor Belitsky
In this paper, we report about the development, fabrication, and characterization of a balanced waveguide hot electron bolometer (HEB) receiver for the Atacama Pathfinder EXperiment telescope covering the frequency band of 1.25-1.39 THz. The receiver uses a quadrature balanced scheme and two HEB mixers, fabricated from 4- to 5-nm-thick NbN film deposited on crystalline quartz substrate with an MgO buffer layer in between. We employed a novel micromachining method to produce all-metal waveguide parts at submicrometer accuracy (the main-mode waveguide dimensions are 90 times 180 mum ). We present details on the mixer design and measurement results, including receiver noise performance, stability and ldquofirst-lightrdquo at the telescope site. The receiver yields a double-sideband noise temperature averaged over the RF band below 1200 K, and outstanding stability with a spectroscopic Allan time more than 200 s.
IEEE Transactions on Terahertz Science and Technology | 2012
Bhushan Billade; Olle Nyström; Denis Meledin; Erik Sundin; Igor Lapkin; Mathias Fredrixon; Vincent Desmaris; Hawal Marouf Rashid; Magnus Strandberg; Sven-Erik Ferm; Alexey Pavolotsky; Victor Belitsky
We present performance of the first ALMA Band 5 production cartridge, covering frequencies from 163 to 211 GHz. Atacama Large Millimeter/sub-millimeter Array (ALMA) Band 5 is a dual polarization, sideband separation (2SB) receiver based on all Niobium (Nb) superconductor-insulator-superconductor (SIS) tunnel junction mixers, providing 16 GHz of instantaneous RF bandwidth for astronomy observations. The 2SB mixer for each polarization employs a quadrature configuration. The sideband separation occurs at the output of the IF hybrid that has integrated bias-T for biasing the mixers, and is produced using superconducting thin-film technology. Experimental verification of the Band 5 cold cartridge performed together with warm cartridge assembly, confirms that the system noise temperature is below 45 K over most of the RF band, which is less than 5 photon noise (5 hf/k). This is to our knowledge, the best results reported at these frequencies. The measurement of the sideband rejection indicates that the sideband rejection is better than 10 dB over 90% of the observational band.
Microelectronics Journal | 2005
Alexey Pavolotsky; Denis Meledin; Christophe Risacher; Miroslav Pantaleev; Victor Belitsky
In this paper, we describe our progress in micromachining of submillimeter waveguide structures such as a quadrature waveguide coupler which is a part of a THz balanced heterodyne receiver. We have set up and developed pilot testing of the micromachining process with required high quality of structure.
Journal of Micromechanics and Microengineering | 2008
Vincent Desmaris; Denis Meledin; Alexey Pavolotsky; Raquel Monje; Victor Belitsky
A novel technology for the manufacturing of micromachined all-metal waveguide circuits and structures for frequency bands ranging from 200 up to 7000 GHz (sub-millimetre and THz) is presented. The waveguide circuits are formed by using metal electroplating with preceding sputtering of a thin metal film seed layer over a photo-lithographically patterned thick SU-8 photoresist. The process provides the possibility of making three-dimensional structures via facilitating multi-level (layered) designs. The surface roughness of the THz waveguide structure was demonstrated to be as low as 30 nm. This technology was used to build a state-of-the-art waveguide balanced 1.3 THz hot electron bolometer mixer and other applications for radio astronomy instrumentation.
international conference on infrared, millimeter, and terahertz waves | 2007
Victor Belitsky; Igor Lapkin; Vessen Vassilev; Raquel Monje; Alexey Pavolotsky; Denis Meledin; Douglas Henke; Olle Nyström; Vincent Desmaris; Christophe Risacher; Magnus Svensson; Michael Olberg; Erik Sundin; Matthias Fredrixon; Dimitar Dochev; Sven-Erik Ferm; Hans Olofsson
APEX, the Atacama PAthflnder Experiment (APEX) Telescope, is a partnership between Max Planck Institut fur Radioastronomie (in collaboration with Astronomisches Institut Ruhr Universitat Bochum (AIRUB)), Onsala Space Observatory and the European Southern Observatory. The telescope antenna, supplied by VERTEX Antennentechnik, is a 12 m antenna with a 17 mum rms surface accuracy operating at the Atacama Desert in the Chilean Andes at a 5100 m altitude. The APEX heterodyne facility receiver is placed in the telescope Nasmyth Cabin A. The receivers are coupled to the antenna via relay optics allowing the operation of two different Pi-type instruments and a 6-channel facility heterodyne receiver to cover approximately 210 - 1500 GHz frequency range while providing frequency independent illumination of the secondary. In this report, we present details on the optics for the APEX facility heterodyne receiver and details of its design. The report includes a very brief review of the APEX Band 1, 211 - 270 GHz, Band 2, 270 - 370 GHz, Band 3, 385 - 500 GHz, all based on sideband separation SIS mixer technology and Band T2, 1250 - 1390 GHz, a balanced waveguide HEB mixer, all developed by GARD.
Superconductor Science and Technology | 2011
Dimitar Dochev; Vincent Desmaris; Alexey Pavolotsky; Denis Meledin; Zonghe Lai; Anne Henry; Erik Janzén; Eckhard Pippel; J Woltersdorf; Victor Belitsky
We report on electrical properties and microstructure of epitaxial thin NbN films grown on 3C-SiC/Si substrates by means of reactive magnetron sputtering. A complete epitaxial growth at the NbN/3C-SiC interface has been confirmed by means of high resolution transmission electron microscopy (HRTEM) along with x-ray diffractometry (XRD). Resistivity measurements of the films have shown that the superconducting transition onset temperature (TC) for the best specimen is 11.8 K. Using these epitaxial NbN films, we have fabricated submicron-size hot-electron bolometer (HEB) devices on 3C-SiC/Si substrate and performed their complete DC characterization. The observed critical temperature TC = 11.3 K and critical current density of about 2.5 MA cm − 2 at 4.2 K of the submicron-size bridges were uniform across the sample. This suggests that the deposited NbN films possess the necessary homogeneity to sustain reliable hot-electron bolometer device fabrication for THz mixer applications.
Superconductor Science and Technology | 2014
Sascha Krause; Denis Meledin; Vincent Desmaris; Alexey Pavolotsky; Victor Belitsky; Mariusz Rudzinski; Eckhard Pippel
The suitability of AlxGa1-xN epi-layer to deposit onto ultra-thin NbN films has been demonstrated for the first time. High quality single-crystal films with 5 nm thickness confirmed by high-resolution transmission electron microscopy (HRTEM) have been deposited in a reproducible manner by means of reactive DC magnetron sputtering at elevated temperatures and exhibit critical temperatures (Tc) as high as 13.2 K and residual resistivity ratio (RRR) ~ 1 on hexagonal GaN epi-layer. With increasing the Al-content x in the AlxGa1-xN epi-layer above 20% a gradual deterioration of Tc down to 10 K was observed. Deposition of NbN on bare silicon substrates served as reference and comparison. Excellent spatial homogeneity of the fabricated films was confirmed by R(T) measurements of patterned micro-bridges across the entire film area. The superconducting properties of those films were further characterized by critical magnetic field and critical current measurements. It is expected that the employment of GaN material as a buffer-layer for the deposition of ultra-thin NbN films prospectively benefit terahertz electronics, particularly hot electron bolometer (HEB) mixers.
Proceedings of SPIE | 2006
Victor Belitsky; Igor Lapkin; Raquel Monje; Vessen Vassilev; Christophe Risacher; Alexey Pavolotsky; Denis Meledin; Michael Olberg; Miroslav Pantaleev; R. S. Booth
APEX, the Atacama Pathfinder Experiment, is collaboration between Max Planck Institut fur Radioastronomie (MPIfR) with Astronomisches Institut Ruhr Universitat Bochum, Onsala Space Observatory and the European Southern Observatory (ESO). The telescope was supplied by VERTEX Antennentechnik in Duisburg, Germany, and is a 12 m antenna with 15 μm rms surface accuracy operating at the Atacama Desert Llano Chajnantor, in the Chilean Andes at 5100 m altitude. APEX heterodyne single pixel facility receiver are placed in the telescope Nasmyth cabin A. The receivers are coupled to the antenna via relay optics providing possibility to operate either one of the two different PI-type instruments or a multi-channel facility heterodyne receiver to cover 211 - 1500 GHz frequency range. In this report, we present the optical design for APEX single-pixel facility heterodyne receiver providing frequency independent illumination of the secondary for all the receiver channels. We present design of the two-channel facility receiver APEX A, installed and operating since June 2005, and of the coming 6-channel APEX facility receiver. The report includes a brief review of the mixer technology development status for APEX Band 1, 211 - 270 GHz, using sideband separation technology (2SB), Band 2, 270 - 370 GHz, 2SB, Band 3, 385 - 500 GHz, 2SB, and Band T2, 1250 - 1390 GHz, HEB waveguide balanced mixer, those on the development at Onsala Space Observatory. We present description of the receiver control system and example observation of APEX 2a receiver.
IEEE Microwave and Wireless Components Letters | 2014
Hawal Marouf Rashid; Denis Meledin; Vincent Desmaris; Victor Belitsky
We present a new design concept for a 90° waveguide hybrid and its implementation. This novel hybrid design is based on a multiple branch waveguide hybrid. The primary feature of this quadrature waveguide hybrid is the introduction of a controllable ripple in the operational band for achieving a better overall amplitude imbalance. This design concept is verified by implementation of a 90° waveguide hybrid for the 166-208 GHz band and can be used for waveguide hybrids up to several THz. Our simulations indicate that the amplitude imbalance of the designed hybrid is better than 0.11 dB over the most of the 166-208 GHz band with a phase imbalance better than ± 2.3°. Experimental verification of the hybrid shows excellent agreement with simulations with an amplitude imbalance better than 0.15 dB and phase imbalance of ± 2.5° over most of the band being achieved.