Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis P. Dowling is active.

Publication


Featured researches published by Denis P. Dowling.


Journal of Biomaterials Applications | 2011

Effect of Surface Wettability and Topography on the Adhesion of Osteosarcoma Cells on Plasma-modified Polystyrene

Denis P. Dowling; Ian Miller; Malika Ardhaoui; William M. Gallagher

Biomaterials interact with the biological environment at their surface, making accurate biophysical characterization of the surface crucially important for understanding subsequent biological effects. In this study, the surface of polystyrene (PS) was systematically altered in order to determine the effect of plasma treatment and surface roughness on cell adhesion and spreading. Surfaces with water contact angle from hydrophilic (12°) to superhydrophobic (155°) were obtained through a combination of modifying surface roughness (R a), the deposition of siloxane coatings and the fluorination of the PS surface. R a values in the range of 19—2365 nm were obtained by grinding the PS surface. The nanometer-thick siloxane coatings were deposited using an atmospheric pressure plasma system, while the fluorination of the PS was carried out using a low-pressure radio frequency (RF) plasma. The siloxane coatings were obtained using a liquid poly(dimethylsiloxane) precursor that was nebulized into helium or helium/oxygen plasmas. Water contact angles in the range of 12—122° were obtained with these coatings. Cell adhesion studies were carried out using human MG63 osteosarcoma cells. It was observed that higher polymer surface roughness enhanced cell adhesion, but had a negative effect on cell spreading. Optimum cell adhesion was observed at ∼64° for the siloxane coatings, with a decrease in adhesion observed for the more hydrophilic and hydrophobic coatings. This decrease in cell adhesion with an increase in hydrophobicity was also observed for the fluorinated PS surfaces with water contact angles in the range of 110—155°.


Surface & Coatings Technology | 2003

Anti-bacterial silver coatings exhibiting enhanced activity through the addition of platinum

Denis P. Dowling; A.J Betts; C Pope; M.L. McConnell; R. Eloy; M.N. Arnaud

Abstract Anti-bacterial silver coatings were deposited on thermally sensitive polymeric substrates using a combination of magnetron sputtering and neutral atom beam (Saddle Field) plasma sources. The anti-bacterial activity of silver is dependent on the release of Ag+ ions, which act by displacing other essential metal ions such as Ca2+ or Zn+. This study evaluates the use of platinum to enhance the release of silver ions from the silver coating. In the galvanic series platinum is more active than silver and therefore Pt enhances Ag+ ion formation through galvanic action. In order to evaluate this, potential step (chronoamperometric) experiments were performed on silver/platinum alloys containing 0.5 and 3.0% Pt. The resulting current–time curves demonstrated that Ag+ formation increased with platinum addition by up to 100%. A magnetron sputtering target was fabricated consisting of 1% Pt in a Ag matrix. This was used to sputter Pt/Ag coatings with thicknesses in the range 5–12 nm onto silicone and polyurethane substrates. The bacterial adhesion and bactericidal effects of the coated polymers was assessed using Straphylococcus epidermidis and the cytotoxicity using fibroblast cells. The addition of 1% Pt was found to significantly enhance the anti-bacterial effectiveness of the Ag coatings. Up to a 2 log reduction in bacterial adhesion was achieved for 5 nm thick Ag/1% Pt coatings on silicone, which did not exhibit cytotoxicity.


Thin Solid Films | 2001

Deposition of anti-bacterial silver coatings on polymeric substrates

Denis P. Dowling; K. Donnelly; M.L. McConnell; R. Eloy; M.N. Arnaud

A low temperature (708C) magnetron deposition process has been developed for the deposition of silver coatings on thermally sensitive polymeric substrates. This low temperature deposition was achieved by combining magnetron sputtering with a neutral atom beam (Saddle Field) plasma source. A range of polymer sheet and tube substrates was coated with silver thicknesses in the range 5–50 nm. The bacterial adhesion and bactericidal effects of the coated polymers was assessed using Staphylococcus epidermidis and the cytotoxicity using fibroblast cells. Up t o a 3 log reduction in bacterial adhesion was achieved for silver coatings on polyurethane, which did not exhibit cytotoxicity. � 2001 Elsevier Science B.V. All rights reserved.


Biomaterials | 2010

Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique

Peter O'Hare; Brian J. Meenan; George A. Burke; Greg Byrne; Denis P. Dowling; John A. Hunt

Hydroxyapatite (HA) is routinely used as a coating on a range of press-fit (cementless) orthopaedic implants to enhance their osseointegration. The standard plasma spraying method used to deposit a HA surface layer on such implants often contains unwanted crystal phases that can lead to coating delamination in vivo. Consequently, there has been a continuous drive to develop alternate surface modification technologies that can eliminate the problems caused by a non-optimal coating process. In this study two methods for creating a HA layer on metal alloys that employ micro-blasting have been evaluated to determine if the inclusion of an abrasive agent can enhance the in vitro and in vivo performance of the modified surface. The first method employs direct micro-blasting using HA as the abrasive media, while the second employs a simultaneous blasting with an alumina abrasive and coincident blasting with HA as a dopant. Whereas, both methods were found to produce a surface which was enriched with HA, the respective microstructures created were significantly different. Detailed surface characterisation revealed that the use of the abrasive produced disruption of the metal surface without producing detectable incorporation of alumina particles. Roughening of the metal surface in this way breached the passivating oxide layer and created sites which subsequently provided for impregnation, mechanical interlocking and chemical bonding of HA. The co-incident use of an alumina abrasive and a HA dopant resulted in a stable surface that demonstrated enhanced in vitro osteoblast attachment and viability as compared to the response to the surface produced using HA alone or the metal substrate control. Implantation of the surface produced by co-incident blasting with alumina and HA in a rabbit model confirmed that this surface promoted the in vivo formation of early stage lamellar bone growth.


ACS Applied Materials & Interfaces | 2014

Probing the redox states at the surface of electroactive nanoporous nio thin films

Andrea Giacomo Marrani; Vittoria Novelli; Stephen Sheehan; Denis P. Dowling; Danilo Dini

Nanoporous NiO thin film electrodes were obtained via plasma-assisted microwave sintering and characterized by means of a combination of electrochemical techniques and X-ray photoelectron spectroscopy (XPS). The aim of this study is the elucidation of the nature of the surface changes introduced by the redox processes of this nanostructured material. NiO undergoes two distinct electrochemical processes of oxidation in aqueous electrolyte with the progress of NiO anodic polarization. These findings are consistent with the sequential formation of oxyhydroxide species at the surface, the chemical nature of which was assessed by XPS. Electronic relaxation effects in the Ni 2p spectra clearly indicated that the superficial oxyhydroxide species resulted to be β-NiOOH and γ-NiOOH. We also show for the first time spectral evidence of an electrochemically generated Ni(IV) species. This study has direct relevance for those applications in which NiO electrodes are utilized in aqueous electrolyte, namely catalytic water splitting or electrochromism, and may constitute a starting point for the comprehension of electronic phenomena at the NiO/organic electrolyte interface of cathodic dye-sensitized solar cells (p-DSCs).


Physical Chemistry Chemical Physics | 2013

Dye sensitised solar cells with nickel oxide photocathodes prepared via scalable microwave sintering

Elizabeth A. Gibson; M. Awais; Danilo Dini; Denis P. Dowling; Mary T. Pryce; Johannes G. Vos; Gerrit Boschloo; Anders Hagfeldt

Photoactive NiO electrodes for cathodic dye-sensitised solar cells (p-DSCs) have been prepared with thicknesses ranging between 0.4 and 3.0 μm by spray-depositing pre-formed NiO nanoparticles on fluorine-doped tin oxide (FTO) coated glass substrates. The larger thicknesses were obtained in sequential sintering steps using a conventional furnace (CS) and a newly developed rapid discharge sintering (RDS) method. The latter procedure is employed for the first time for the preparation of p-DSCs. In particular, RDS represents a scalable procedure that is based on microwave-assisted plasma formation that allows the production in series of mesoporous NiO electrodes with large surface areas for p-type cell photocathodes. RDS possesses the unique feature of transmitting heat from the bulk of the system towards its outer interfaces with controlled confinement of the heating zone. The use of RDS results in a drastic reduction of processing times with respect to other deposition methods that involve heating/calcination steps with associated reduced costs in terms of energy. P1-dye sensitized NiO electrodes obtained via the RDS procedure have been tested in DSC devices and their performances have been analysed and compared with those of cathodic DSCs derived from CS-deposited samples. The largest conversion efficiencies (0.12%) and incident photon-to-current conversion efficiencies, IPCEs (50%), were obtained with sintered NiO electrodes having thicknesses of ~1.5-2.0 μm. In all the devices, the photogenerated holes in NiO live significantly longer (τ(h) ~ 1 s) than have previously been reported for P1-sensitized NiO photocathodes. In addition, P1-sensitised sintered electrodes give rise to relatively high photovoltages (up to 135 mV) when the triiodide-iodide redox couple is used.


Meat Science | 2014

Effect of an active packaging with citrus extract on lipid oxidation and sensory quality of cooked turkey meat.

C. Contini; Rocío Álvarez; Michael O'Sullivan; Denis P. Dowling; Sean Óg Gargan; Frank J. Monahan

An antioxidant active packaging was prepared by coating a citrus extract, consisting of a mixture of carboxylic acids and flavanones, on polyethylene terephthalate trays. The effect of the packaging in reducing lipid oxidation in cooked turkey meat and on meat pH, colour characteristics and sensorial parameters was investigated. An untrained sensory panel evaluated the odour, taste, tenderness, juiciness and overall acceptability of the meat, using triangle, paired preference and quantitative response scale tests. A comparison between the antioxidant effects of the different components of the extract was also carried out. The packaging led to a significant reduction in lipid oxidation. After 2 days of refrigerated storage the sensory panel detected differences in odour and, after 4 days, rated the meat stored in the active packaging higher for tenderness and overall acceptability. Citric acid appeared to be the most important component of the extract with regard to its antioxidant potency.


Biotechnology Advances | 2012

In vitro and in vivo bioactivity of CoBlast hydroxyapatite coating and the effect of impaction on its osteoconductivity

Fei Tan; Mariam Naciri; Denis P. Dowling

The novel non-thermal CoBlast process has been used recently to create a hydroxyapatite coating on metallic substrates with improved biological response compared to an uncoated implant. In this study, we compared the biological effect of coatings deposited by this process and the industrial standard technique - plasma-spray. Physicochemical properties of these two coatings have been found to be significantly different in that CoBlast HA is less rough but more hydrophilic than the plasma-spray HA as evidenced by data obtained from profilometry and goniometry. Mesenchymal stem cell attachment and adhesion are enhanced on CoBlast HA. Analysis by a combination of EDX and ICP suggests that the higher crystallinity retained by the CoBlast HA result in slower coating dissolution. Detailed in vitro evaluation reveals that plasma-spray HA might induce slightly faster cell proliferation and earlier osteogenic differentiation, but CoBlast HA becomes equivalent to it by the late osteogenic stage. PCR array facilitated the identification of differentially regulated genes involved in various functional aspects of in vitro osteogenesis by the CoBlast HA coating. The expression level of the functional protein products of these genes are in agreement with the PCR data. Coating metallic screws with HA significantly improves the in vivo osseointegration. By measuring of removal force using torque measurement instrument and analyzing the patterns found in X-ray images it is demonstrated that the two HA coatings elicit comparable osseointegration. Using simulated impaction model, CoBlast HA is shown to maintain better performance in cell attachment and mineralization than plasma-spray HA, especially following significant impactions. This might indicate a potentially greater osteoconductivity of CoBlast HA coating in shear-stress associated surgical applications. Collectively, it was demonstrated that CoBlast HA is an effective alternative to plasma-spray HA coating and a promising replacement for specialized surgical applications.


Plasma Sources Science and Technology | 2010

Comparison of pilot and industrial scale atmospheric pressure glow discharge systems including a novel electro-acoustic technique for process monitoring

John Tynan; V J Law; P. Ward; Alan Hynes; J. Cullen; Greg Byrne; Stephen Daniels; Denis P. Dowling

A comparison of a pilot and industrial scale atmospheric pressure polymer processing plasma system has been carried out using process-monitoring diagnostic tools during treatment of amorphous polyethylene terephthalate. These systems have been compared using optical emission spectroscopy (OES), photodiode (PD) analysis and multi-variate analysis of the applied electrical and emitted electro-acoustic signals to facilitate scale up operations from the pilot to the industrial scale system. The voltage, current, electro-acoustic intensity and frequency of the plasma systems were found to change systematically with an increase in applied plasma power and addition of oxygen (O2) into a helium (He) plasma. The plasma drive frequency was pulled by the plasma reactance from approximately 26 to 16 kHz on the pilot system and from approximately 36 to 32 kHz on the industrial system, for an increase in applied plasma power and addition of O2. The OES analysis revealed a number of peaks associated with nitrogen (N2) species between 250 and 450 nm due to the presence of air within the He plasma. Temporally resolved analysis of the discharge emission carried out using a PD showed an increase in the number of discharge events per power cycle with an increase in power and a decrease in emission intensity for addition of O2 into the He plasma for both the pilot and industrial scale systems. Using these diagnostic tools both plasma stability and run to run variations were assessed. A visual analysis of the 1.2 m wide plasma was also carried out where a more homogeneous plasma was observed at higher powers.


Bioelectrochemistry | 2013

Plasma functionalized carbon electrode for laccase-catalyzed oxygen reduction by direct electron transfer

Malika Ardhaoui; Meihui Zheng; Jerome Pulpytel; Denis P. Dowling; Claude Jolivalt; Farzaneh Arefi Khonsari

For the first time, a fast and versatile technique, an atmospheric pressure plasma jet (APPJ), has been used to functionalise graphite carbon electrodes for biofuel cell applications. The bioelectrode was functionalized by an atmospheric pressure plasma jet (APPJ) system using air, oxygen (O2) and nitrogen (N2) plasmas applied for only a few seconds. XPS analysis showed that carboxylic groups were created on the carbon substrates using both air and O2 plasmas, while mainly carbonyl and amine/amide functionalities were generated using N2 plasmas. A purified laccase from Trametes versicolor was both adsorbed and covalently bound (NHS/EDC method) to the plasma modified carbon. Higher laccase activity was obtained for the covalently grafted laccase compared to the physically adsorbed one: 13.2 (±2) 10(-3)U of laccase on air treated graphite and two-fold less (5.3 (±1.1) 10(-3)U) were obtained on N2 plasma treated surfaces (1mM ABTS as a substrate, 30°C, pH=3.0), one unit (U) being the quantity of ABTS (μmole) oxidized by laccase per minute. Dioxygen reduction was performed by direct electron transfer (DET). The highest current density, 108μA/cm(2) (at 0.2V (vs. SCE), pH 4.2, room temperature), was recorded for covalently immobilized laccase on N2 plasma treated surfaces (geometric surface=0.38cm(2)). This could be explained by the fact that the highly conductive graphite structure was retained in the case of this surface treatment and could also suggest a preferential orientation of the T1 Cu center of the laccase toward the surface of the N2 plasma treated electrode.

Collaboration


Dive into the Denis P. Dowling's collaboration.

Top Co-Authors

Avatar

Mahfujur Rahman

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Barry Twomey

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Victor J. Law

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Greg Byrne

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danilo Dini

Fritz Haber Institute of the Max Planck Society

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge