Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis P. Maxwell is active.

Publication


Featured researches published by Denis P. Maxwell.


Plant Physiology | 1995

Redox Regulation of Light-Harvesting Complex II and cab mRNA Abundance in Dunaliella salina.

Denis P. Maxwell; D. E. Laudenbach; Norman P. A. Huner

We demonstrate that photosynthetic adjustment at the level of the light-harvesting complex associated with photosystem II (LCHII) in Dunaliella salina is a response to changes in the redox state of intersystem electron transport as estimated by photosystem II (PSII) excitation pressure. To elucidate the molecular basis of this phenomenon, LHCII apoprotein accumulation and cab mRNA abundance were examined. Growth regimes that induced low, but equivalent, excitation pressures (either 13[deg]C/20 [mu]mol m-2 s-1 or 30[deg]C/150 ([mu]mol m-2 s-1) resulted in increased LHCII apoprotein and cab mRNA accumulation relative to algal cultures grown under high excitation pressures (either 13[deg]C/150 [mu]mol m-2 s-1 or 30[deg]C/2500 [mu]mol m-2 s-1). Thermodynamic relaxation of high excitation pressures, accomplished by shifting cultures from a 13 to a 30[deg]C growth regime at constant irradiance for 12 h, resulted in a 6- and 8-fold increase in LHCII apoprotein and cab mRNA abundance, respectively. Similarly, photodynamic relaxation of high excitation pressure, accomplished by a shift from a light to a dark growth regime at constant temperature, resulted in a 2.4- to 4-fold increase in LHCII apoprotein and cab mRNA levels, respectively. We conclude that photosynthetic adjustment to temperature mimics adjustment to high irradiance through a common redox sensing/signaling mechanism. Both temperature and light modulate the redox state of the first, stable quinone electron acceptor of PSII, which reflects the redox poise of intersystem electron transport. Changes in redox poise signal the nucleus to regulate cab mRNA abundance, which, in turn, determines the accumulation of light-harvesting apoprotein. This redox mechanism may represent a general acclimation mechanism for photosynthetic adjustment to environmental stimuli.


Plant Physiology | 1994

Growth at Low Temperature Mimics High-Light Acclimation in Chlorella vulgaris'

Denis P. Maxwell; Stefan Falk; Charles G. Trick; Norman P. A. Huner

Structural and functional alterations to the photosynthetic apparatus after growth at low temperature (5[deg]C) were investigated in the green alga Chlorella vulgaris Beijer. Cells grown at 5[deg]C had a 2-fold higher ratio of chlorophyll a/b, 5-fold lower chlorophyll content, and an increased xanthophyll content compared to cells grown at 27[deg]C even though growth irradiance was kept constant at 150 [mu]mol m-2 s-1. Concomitant with the increase in the chlorophyll a/b ratio was a lower abundance of light-harvesting polypeptides in 5[deg]C-grown cells as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and confirmed by western blotting.The differences in pigment composition were found to be alleviated within 12 h of transferring 5[deg]C-grown cells to 27[deg]C. Furthermore, exposure of 5[deg]C-grown cells to a 30-fold lower growth irradiance (5 [mu]mol m-2 s-1) resulted in pigment content and composition similar to that in cells grown at 27[deg]C and 150 [mu]mol m-2 s-1. Although both cell types exhibited similar measuring-temperature effects on CO2-saturated O2 evolution, 5[deg]C-grown cells exhibited light-saturated rates of O2 evolution that were 2.8-and 3.9-fold higher than 27[deg]C-grown cells measured at 27[deg]C and 5[deg]C, respectively. Steady-state chlorophyll a fluorescence indicated that the yield of photosystem II electron transport of 5[deg]C-grown cells was less temperature sensitive than that of 27[deg]C-grown cells. This appears to be due to an increased capacity to keep the primary, stable quinone electron acceptor of photosystem II (QA) oxidized at low temperature in 5[deg]C- compared with 27[deg]C-grown cells regardless of irradiance. We conclude that Chlorella acclimated to low temperature adjusts its photosynthetic apparatus in response to the excitation pressure on photosystem II and not to the absolute external irradiance. We suggest that the redox state of QA may act as a signal for this photosynthetic acclimation to low temperature in Chlorella.


Plant Physiology | 1995

Photosystem II Excitation Pressure and Development of Resistance to Photoinhibition (I. Light-Harvesting Complex II Abundance and Zeaxanthin Content in Chlorella vulgaris)

Denis P. Maxwell; Stefan Falk; Norman P. A. Huner

The basis of the increased resistance to photoinhibition upon growth at low temperature was investigated. Photosystem II (PSII) excitation pressure was estimated in vivo as 1 - qp (photochemical quenching). We established that Chlorella vulgaris exposed to either 5[deg]C/150 [mu]mol m-2 s-1 or 27[deg]C/2200 [mu]mol m-2 s-1 experienced a high PSII excitation pressure of 0.70 to 0.75. In contrast, Chlorella exposed to either 27[deg]C/150 [mu]mol m-2 s-1 or 5[deg]C/20 [mu]mol m-2 s-1 experienced a low PSII excitation pressure of 0.10 to 0.20. Chlorella grown under either regime at high PSII excitation pressure exhibited: (a) 3-fold higher light-saturated rates of O2 evolution; (b) the complete conversion of PSII[alpha] centers to PSII[beta] centers; (c) a 3-fold lower epoxidation state of the xanthophyll cycle intermediates; (d) a 2.4-fold higher ratio of chlorophyll a/b; and (e) a lower abundance of light-harvesting polypeptides than Chlorella grown at either regime at low PSII excitation pressure. In addition, cells grown at 5[deg]C/150 [mu]mol m-2 s-1 exhibited resistance to photoinhibition comparable to that of cells grown at 27[deg]C/2200 [mu]mol m-2 s-1 and were 3- to 4-fold more resistant to photoinhibition than cells grown at either regime at low excitation pressure. We conclude that increased resistance to photoinhibition upon growth at low temperature reflects photosynthetic adjustment to high excitation pressure, which results in an increased capacity for nonradiative dissipation of excess light through zeaxanthin coupled with a lower probability of light absorption due to reduced chlorophyll per cell and decreased abundance of light-harvesting polypeptides.


The Plant Cell | 2009

Photosynthetic Redox Imbalance Governs Leaf Sectoring in the Arabidopsis thaliana Variegation Mutants immutans, spotty, var1, and var2

Rainer Bode; Wenze Li; Marianna Krol; Diego Saccon; Shelly Wang; Lori Schillaci; Steven R. Rodermel; Denis P. Maxwell; Norman P. A. Huner

We hypothesized that chloroplast energy imbalance sensed through alterations in the redox state of the photosynthetic electron transport chain, measured as excitation pressure, governs the extent of variegation in the immutans mutant of Arabidopsis thaliana. To test this hypothesis, we developed a nondestructive imaging technique and used it to quantify the extent of variegation in vivo as a function of growth temperature and irradiance. The extent of variegation was positively correlated (R2 = 0.750) with an increase in excitation pressure irrespective of whether high light, low temperature, or continuous illumination was used to induce increased excitation pressure. Similar trends were observed with the variegated mutants spotty, var1, and var2. Measurements of greening of etiolated wild-type and immutans cotyledons indicated that the absence of IMMUTANS increased excitation pressure twofold during the first 6 to 12 h of greening, which led to impaired biogenesis of thylakoid membranes. In contrast with IMMUTANS, the expression of its mitochondrial analog, AOX1a, was transiently upregulated in the wild type but permanently upregulated in immutans, indicating that the effects of excitation pressure during greening were also detectable in mitochondria. We conclude that mutations involving components of the photosynthetic electron transport chain, such as those present in immutans, spotty, var1, and var2, predispose Arabidopsis chloroplasts to photooxidation under high excitation pressure, resulting in the variegated phenotype.


Plant Physiology | 2006

IMMUTANS Does Not Act as a Stress-Induced Safety Valve in the Protection of the Photosynthetic Apparatus of Arabidopsis during Steady-State Photosynthesis

Alexander G. Ivanov; Aigen Fu; Jane Geisler-Lee; Luke Hendrickson; Matt Geisler; Gregory Stewart; Marianna Krol; Vaughan Hurry; Steven R. Rodermel; Denis P. Maxwell; Norman P. A. Huner

IMMUTANS (IM) encodes a thylakoid membrane protein that has been hypothesized to act as a terminal oxidase that couples the reduction of O2 to the oxidation of the plastoquinone (PQ) pool of the photosynthetic electron transport chain. Because IM shares sequence similarity to the stress-induced mitochondrial alternative oxidase (AOX), it has been suggested that the protein encoded by IM acts as a safety valve during the generation of excess photosynthetically generated electrons. We combined in vivo chlorophyll fluorescence quenching analyses with measurements of the redox state of P700 to assess the capacity of IM to compete with photosystem I for intersystem electrons during steady-state photosynthesis in Arabidopsis (Arabidopsis thaliana). Comparisons were made between wild-type plants, im mutant plants, as well as transgenics in which IM protein levels had been overexpressed six (OE-6×) and 16 (OE-16×) times. Immunoblots indicated that IM abundance was the only major variant that we could detect between these genotypes. Overexpression of IM did not result in increased capacity to keep the PQ pool oxidized compared to either the wild type or im grown under control conditions (25°C and photosynthetic photon flux density of 150 μmol photons m−2 s−1). Similar results were observed either after 3-d cold stress at 5°C or after full-leaf expansion at 5°C and photosynthetic photon flux density of 150 μmol photons m−2 s−1. Furthermore, IM abundance did not enhance protection of either photosystem II or photosystem I from photoinhibition at either 25°C or 5°C. Our in vivo data indicate that modulation of IM expression and polypeptide accumulation does not alter the flux of intersystem electrons to P700+ during steady-state photosynthesis and does not provide any significant photoprotection. In contrast to AOX1a, meta-analyses of published Arabidopsis microarray data indicated that IM expression exhibited minimal modulation in response to myriad abiotic stresses, which is consistent with our functional data. However, IM exhibited significant modulation in response to development in concert with changes in AOX1a expression. Thus, neither our functional analyses of the IM knockout and overexpression lines nor meta-analyses of gene expression support the model that IM acts as a safety valve to regulate the redox state of the PQ pool during stress and acclimation. Rather, IM appears to be strongly regulated by developmental stage of Arabidopsis.


Biochimica et Biophysica Acta | 2011

Flexibility in photosynthetic electron transport: The physiological role of plastoquinol terminal oxidase (PTOX)☆

Allison E. McDonald; Alex G. Ivanov; Rainer Bode; Denis P. Maxwell; Steven R. Rodermel; Norman P. A. Huner

Oxygenic photosynthesis depends on a highly conserved electron transport system, which must be particularly dynamic in its response to environmental and physiological changes, in order to avoid an excess of excitation energy and subsequent oxidative damage. Apart from cyclic electron flow around PSII and around PSI, several alternative electron transport pathways exist including a plastoquinol terminal oxidase (PTOX) that mediates electron flow from plastoquinol to O(2). The existence of PTOX was first hypothesized in 1982 and this was verified years later based on the discovery of a non-heme, di-iron carboxylate protein localized to thylakoid membranes that displayed sequence similarity to the mitochondrial alternative oxidase. The absence of this protein renders higher plants susceptible to excitation pressure dependant variegation combined with impaired carotenoid synthesis. Chloroplasts, as well as other plastids (i.e. etioplasts, amyloplasts and chromoplasts), fail to assemble organized internal membrane structures correctly, when exposed to high excitation pressure early in development. While the role of PTOX in plastid development is established, its physiological role under stress conditions remains equivocal and we postulate that it serves as an alternative electron sink under conditions where the acceptor side of PSI is limited. The aim of this review is to provide an overview of the past achievements in this field and to offer directions for future investigative efforts. Plastoquinol terminal oxidase (PTOX) is involved in an alternative electron transport pathway that mediates electron flow from plastoquinol to O(2). This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.


FEBS Letters | 1995

Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle

Alexander G. Ivanov; Marianna Krol; Denis P. Maxwell; N. P. A. Huner

The exogenous application of abscisic acid (ABA) to barley seedlings resulted in partial protection of the PSII photochemistry against photoinhibition at low temperature, the effect being most pronounced at 10−5 M ABA. This was accompanied by higher photochemical quenching (qP) in ABA‐treated leaves. A considerable increase (122%) in the amount of total carotenoids and xanthophylls (antheraxanthin, violaxanthin and zeaxanthin) was also found in the seedlings subjected to ABA. The activity of the xanthophyll cycle measured by the epoxidation state of xanthophylls under high‐light treatment was higher in ABA‐treated plants compared with the control. This corresponds to a higher value (0.411) of non‐photochemical quenching (qNP) observed in ABA‐treated than in control (0.306) leaves.


Biochimica et Biophysica Acta | 1998

BIOCHEMICAL AND GENETIC CONTROLS EXERTED BY PLANT MITOCHONDRIA

Lee McIntosh; Tad Eichler; Gordon R. Gray; Denis P. Maxwell; Roxy Nickels; Yong Wang

Abstract Higher plant mitochondria contain two terminal oxidases, cytochrome c oxidase and a cyanide-resitant ‘alternative’ oxidase. Electron flux through these two respiratory pathways is controlled by environmental conditions, stimuli received by mitochondria. In general, stresses such as cold, wounding, pathogen attack and others favor electron flow through the alternative oxidase. One of the proposed functions of the alternative pathway is to relieve the tricarboxylic acid (TCA) cycle of inhibition from cytochrome pathway products and allow the cycle to furnish carbon skeletons for anabolic requirements. We are currently investigating, with an NADP-linked isocitrate dehydrogenase in plant mitochondria, a possible link between respiratory control and carbon flux from the TCA cycle. Regulation of the nuclear gene encoding the alternative oxidase, Aox1, is also being employed as a model for perception of the many stresses by the mitochondria and transfer of these signals to the nucleus. Our initial results indicate that hydrogen peroxide is an intermediate in this signalling process.


Archive | 1996

Photosynthetic Adjustment to Temperature

Stefan Falk; Denis P. Maxwell; David E. Laudenbach; Norman P. A. Huner

The description of a general mechanism for photosynthetic adjustment to temperature that encompasses all autotrophic species is not possible for three principal reasons: (i) inherent genetic diversity, (ii) differential strategies in growth and development, and (iii) organisms respond to temperature changes rather than to absolute temperature. Thus, ‘high’ and ‘low’ temperature are relative terms and will differ for pyschrophilic, mesophilic and thermophilic organisms. However, given this complexity, some consensus regarding photosynthetic adjustment to temperature is emerging. At low temperature (0–10 °C), photosynthesis is constrained thermodynamically. This may be manifested by chloroplast phosphate limitation due to reduced rates of sucrose synthesis and/or source-sink limitations. In this case, rates of CO2 uptake and O2 evolution are regulated directly through metabolite accumulation (feedback inhibition) and photosynthetic control. Alternatively, feedback inhibition may be regulated indirectly through catabolite repression of photosynthetic genes. Although light may exacerbate susceptibility to photoinhibition at low temperature in many species, cold grown, chilling-tolerant plants exhibit increased capacity for carbohydrate synthesis at low temperature which alleviates phosphate limitation, supplies a cryoprotectant and results in higher photosynthetic capacity than warm-grown plants. However, photosynthetic adjustment in cold-grown higher plants and algae does not reflect adjustment to low temperature per se, but rather, changes in excitation pressure on PS II. In contrast, photosynthesis in chilling-sensitive plants is not only constrained thermodynamically by low temperature but is also severely inhibited developmentally.


Plant Physiology | 1996

Photosystem II Excitation Pressure and Photosynthetic Carbon Metabolism in Chlorella vulgaris

Leonid V. Savitch; Denis P. Maxwell; Norman P. A. Huner

Chlorella vulgaris grown at 5[deg]C/150 [mu]mol m-2 s-1 mimics cells grown under high irradiance (27[deg]C/2200 [mu]mol m-2 s-1). This has been rationalized through the suggestion that both populations of cells were exposed to comparable photosystem II (PSII) excitation pressures measured as the chlorophyll a fluorescence quenching parameter, 1 - qP (D.P. Maxwell, S. Falk, N.P.A. Huner [1995] Plant Physiol 107: 687–694). To assess the possible role(s) of feed-back mechanisms on PSII excitation pressure, stromal and cytosolic carbon metabolism were examined. Sucrose phosphate synthase and fructose-1,6-bisphosphatase activities as well as the ratios of fructose-1,6-bisphosphate/fructose-6-phosphate and sucrose/starch indicated that cells grown at 27[deg]C/2200 [mu]mol m-2 s-1 appeared to exhibit a restriction in starch metabolism. In contrast, cells grown at 5[deg]C/150 [mu]mol m-2 s-1 appeared to exhibit a restriction in the sucrose metabolism based on decreased cytosolic fructose-1,6- bisphosphatase and sucrose phosphate synthase activities as well as a low sucrose/starch ratio. These metabolic restrictions may feed-back on photosynthetic electron transport and, thus, contribute to the observed PSII excitation pressure. We conclude that, although PSII excitation pressure may reflect redox regulation of photosynthetic acclimation to light and temperature in C. vulgaris, it cannot be considered the primary redox signal. Alternative metabolic sensing/signaling mechanisms are discussed.

Collaboration


Dive into the Denis P. Maxwell's collaboration.

Top Co-Authors

Avatar

Norman P. A. Huner

University of Ontario Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Marianna Krol

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Alexander G. Ivanov

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Gordon R. Gray

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar

Stefan Falk

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Lee McIntosh

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles G. Trick

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Marc Possmayer

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Rainer Bode

University of Western Ontario

View shared research outputs
Researchain Logo
Decentralizing Knowledge