Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis Pollney is active.

Publication


Featured researches published by Denis Pollney.


Physical Review D | 2003

Gauge conditions for long term numerical black hole evolutions without excision

Miguel Alcubierre; Bernd Brügmann; Denis Pollney; Edward Seidel; Ryoji Takahashi

We extend previous work on 3D black hole excision to the case of distorted black holes, with a variety of dynamic gauge conditions that are able to respond naturally to the spacetime dynamics. We show that the combination of excision and gauge conditions we use is able to drive highly distorted, rotating black holes to an almost static state at late times, with well behaved metric functions, without the need for any special initial conditions or analytically prescribed gauge functions. Further, we show for the first time that one can extract accurate waveforms from these simulations, with the full machinery of excision or no excision and dynamic gauge conditions. The evolutions can be carried out for long times, far exceeding the longevity and accuracy of even better resolved 2D codes. While traditional 2D codes show errors in quantities such as apparent horizon mass of over 100% by t ≈ 100M, and crash by t ≈ 150M, with our new techniques the same systems can be evolved for more than hundreds of M’s in full 3D with errors of only a few percent.


Physical Review Letters | 2011

Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins

P. Ajith; Mark Hannam; S. Husa; Y. Chen; Bernd Brügmann; Nils Dorband; Doreen Müller; F. Ohme; Denis Pollney; Christian Reisswig; L. Santamaria; Jennifer Seiler

We present the first analytical inspiral-merger-ringdown gravitational waveforms from binary black holes (BBHs) with nonprecessing spins, that is based on a description of the late-inspiral, merger and ringdown in full general relativity. By matching a post-Newtonian description of the inspiral to a set of numerical-relativity simulations, we obtain a waveform family with a conveniently small number of physical parameters. These waveforms will allow us to detect a larger parameter space of BBH coalescence, including a considerable fraction of precessing binaries in the comparable-mass regime, thus significantly improving the expected detection rates.


Physical Review D | 2010

Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries

L. Santamaria; F. Ohme; P. Ajith; Bernd Brügmann; Nils Dorband; Mark Hannam; S. Husa; Philipp Mösta; Denis Pollney; Christian Reisswig; E. L. Robinson; Jennifer Seiler; Badri Krishnan

We present a new phenomenological gravitational waveform model for the inspiral and coalescence of nonprecessing spinning black hole binaries. Our approach is based on a frequency-domain matching of post-Newtonian inspiral waveforms with numerical relativity based binary black hole coalescence waveforms. We quantify the various possible sources of systematic errors that arise in matching post-Newtonian and numerical relativity waveforms, and we use a matching criteria based on minimizing these errors; we find that the dominant source of errors are those in the post-Newtonian waveforms near the merger. An analytical formula for the dominant mode of the gravitational radiation of nonprecessing black hole binaries is presented that captures the phenomenology of the hybrid waveforms. Its implementation in the current searches for gravitational waves should allow cross-checks of other inspiral-merger-ringdown waveform families and improve the reach of gravitational-wave searches.


Physical Review Letters | 2007

Recoil velocities from equal-mass binary-black-hole mergers

Michael Koppitz; Denis Pollney; Christian Reisswig; Luciano Rezzolla; Jonathan Thornburg; Peter Diener

The final evolution of a binary-black-hole system gives rise to a recoil velocity if an asymmetry is present in the emitted gravitational radiation. Measurements of this effect for nonspinning binaries with unequal masses have pointed out that kick velocities approximately 175 km/s can be reached for a mass ratio approximately 0.36. However, a larger recoil can be obtained for equal-mass binaries if the asymmetry is provided by the spins. Using two independent methods we show that the merger of such binaries yields velocities as large as approximately 440 km/s for black holes having unequal spins that are antialigned and parallel to the orbital angular momentum.


Physical Review D | 2007

Recoil velocities from equal-mass binary black-hole mergers: A systematic investigation of spin-orbit aligned configurations

Denis Pollney; Christian Reisswig; Luciano Rezzolla; Bela Szilagyi; Marcus Ansorg; Barrett Deris; Peter Diener; Ernst Nils Dorband; Michael Koppitz; Alessandro Nagar

The final evolution of a binary-black-hole system gives rise to a recoil velocity if an asymmetry is present in the emitted gravitational radiation. Measurements of this effect for nonspinning binaries with unequal masses have pointed out that kick velocities approximately 175 km/s can be reached for a mass ratio approximately 0.36. However, a larger recoil can be obtained for equal-mass binaries if the asymmetry is provided by the spins. Using two independent methods we show that the merger of such binaries yields velocities as large as approximately 440 km/s for black holes having unequal spins that are antialigned and parallel to the orbital angular momentum.


Classical and Quantum Gravity | 2009

Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project

B. E. Aylott; John G. Baker; William D. Boggs; Michael Boyle; P. R. Brady; D. A. Brown; Bernd Brügmann; Luisa T. Buchman; A. Buonanno; L. Cadonati; Jordan Camp; Manuela Campanelli; Joan M. Centrella; S. Chatterji; N. Christensen; Tony Chu; Peter Diener; Nils Dorband; Zachariah B. Etienne; Joshua A. Faber; S. Fairhurst; B. Farr; Sebastian Fischetti; G. M. Guidi; L. M. Goggin; Mark Hannam; Frank Herrmann; Ian Hinder; S. Husa; Vicky Kalogera

The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.


Classical and Quantum Gravity | 2007

A phenomenological template family for black-hole coalescence waveforms

P. Ajith; S. Babak; Y. Chen; M. Hewitson; Badri Krishnan; James Whelan; Bernd Brügmann; Peter Diener; José A. González; Mark Hannam; S. Husa; Michael Koppitz; Denis Pollney; Luciano Rezzolla; L. Santamaría; A. M. Sintes; Ulrich Sperhake; Jonathan Thornburg

Recent progress in numerical relativity has enabled us to model the non-perturbative merger phase of the binary black-hole coalescence problem. Based on these results, we propose a phenomenological family of waveforms which can model the inspiral, merger and ring-down stages of black-hole coalescence. We also construct a template bank using this family of waveforms and discuss its implementation in the search for signatures of gravitational waves produced by black-hole coalescences in the data of ground-based interferometers. This template bank might enable us to extend the present inspiral searches to higher-mass binary black-hole systems, i.e., systems with total mass greater than about 80 solar masses, thereby increasing the reach of the current generation of ground-based detectors.


Physical Review Letters | 2007

Geometry and Regularity of Moving Punctures

Mark Hannam; S. Husa; Denis Pollney; Bernd Brügmann; Niall Ó Murchadha

Significant advances in numerical simulations of black-hole binaries have recently been achieved using the puncture method. We examine how and why this method works by evolving a single black hole. The coordinate singularity and hence the geometry at the puncture are found to change during evolution, from representing an asymptotically flat end to being a cylinder. We construct an analytic solution for the stationary state of a black hole in spherical symmetry that matches the numerical result and demonstrates that the evolution is not dominated by artefacts at the puncture but indeed finds the analytical result.


Classical and Quantum Gravity | 2013

Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

Ian Hinder; A. Buonanno; Michael Boyle; Zachariah B. Etienne; James Healy; Nathan K. Johnson-McDaniel; Alessandro Nagar; Hiroyuki Nakano; Y. Pan; Harald P. Pfeiffer; Michael Pürrer; Christian Reisswig; Mark A. Scheel; Ulrich Sperhake; Bela Szilagyi; Wolfgang Tichy; Barry Wardell; Anıl Zenginoğlu; Daniela Alic; Sebastiano Bernuzzi; Tanja Bode; Bernd Brügmann; Luisa T. Buchman; Manuela Campanelli; Tony Chu; Thibault Damour; Jason D Grigsby; Mark Hannam; Roland Haas; Daniel A. Hemberger

The Numerical–Relativity–Analytical–Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binarys total mass is ~100–200M⊙, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios ≤4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.


Physical Review D | 2001

Black Hole Excision for Dynamic Black Holes

Miguel Alcubierre; Bernd Brügmann; Denis Pollney; Edward Seidel

We extend the previous work on 3D black hole excision to the case of distorted black holes, with a variety of dynamic gauge conditions that respond naturally to the spacetime dynamics. We show that in evolutions of highly distorted, rotating black holes, the combination of excision and the gauge conditions we use is able to drive the coordinates to a frame in which the system looks almost static at late times. Further, we show for the first time that one can extract accurate wave forms from these simulations, with the full machinery of excision and dynamic gauge conditions. The evolutions can be carried out for a long time, far exceeding the longevity and accuracy of better resolved 2D codes.

Collaboration


Dive into the Denis Pollney's collaboration.

Top Co-Authors

Avatar

Christian Reisswig

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Peter Diener

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. Husa

University of the Balearic Islands

View shared research outputs
Top Co-Authors

Avatar

Luciano Rezzolla

Frankfurt Institute for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward Seidel

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Bela Szilagyi

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge