Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis Renard is active.

Publication


Featured researches published by Denis Renard.


International Journal of Biological Macromolecules | 1998

Effects of pH and salt environment on the association of β-lactoglobulin revealed by intrinsic fluorescence studies

Denis Renard; Jacques Lefebvre; M.C.A Griffin; W.G Griffin

The effects of pH, ionic strength and heat on the structure of beta-lactoglobulin (beta-lg) have been investigated by studying the intrinsic tryptophan fluorescence of the protein. Between pH 2 and 9, for sodium chloride concentrations varying from 0.0 to 0.2 M, the position of the fluorescence emission maximum at 20 degrees C remained constant at 328 nm, suggesting that the hydrophobic environment of the fluorophores remained unchanged. The fluorescence intensity increased significantly at pH 2, 7 and 9 on reducing the NaCl concentration of the solutions. The most likely explanation for this, supported by recent light scattering data, is that the presence of NaCl is necessary for beta-lg to dimerize. At the higher NaCl concentrations it was found that dimerization accompanied a reduction in fluorescence intensity. Thus, dissociation appears to reduce the self-quenching of tryptophan residues that occurs within the dimer. The fluorescence of solutions heated below the denaturation temperature reflected the state of association of the protein molecules. Above the denaturation temperature and associated with protein aggregation, an irreversible increase in intrinsic tryptophan fluorescence was observed. We also report what we believe to be the first front-face fluorescence measurements on globular protein gels, showing effects of pH and NaCl concentration.


Colloids and Surfaces B: Biointerfaces | 2001

Study of β-lactoglobulin/acacia gum complex coacervation by diffusing-wave spectroscopy and confocal scanning laser microscopy

Christophe Schmitt; Christian Sanchez; Alf Lamprecht; Denis Renard; Claus-Michael Lehr; Cees G de Kruif; Joël Hardy

Abstract Complex coacervation has been investigated on mixtures of β-lactoglobulin (β-lg) and acacia gum (AG) at pH 4.2 where these two macromolecules interact electrostatically. Changes in β-lg/AG complex coacervation induced by the presence of β-lg aggregates were considered. The nature and structure of particles resulting from complex coacervation were determined by using confocal scanning laser microscopy (CSLM). CSLM revealed fundamental differences in the structure of each of the studied dispersions (at 1 wt.% total concentration). Spherical vesicular coacervates and precipitates (based on β-lg aggregates) were the hallmark of BLG/AG dispersions (β-lg dispersion containing insoluble aggregates). Only coacervates were visible in AF-BLG/AG dispersions (β-lg dispersion free of insoluble aggregates). The latter were characterised by the presence of large foam-like coacervates induced by partial coalescence of single coacervates, especially at the 2:1 protein to polysaccharide (Pr:Ps) ratio. Diffusing wave spectroscopy (DWS) was used to study the stability of dispersions as a function of time. Depending on the Pr:Ps ratio and the presence of β-lg aggregates, the intensity correlation function (g2(t)) shifted to lower correlation times rapidly after mixing of both macromolecules. This revealed the formation of a large number of small particles, characterised by faster Brownian motion. At 1 and 5 wt.% total concentration, the 8:1 Pr:Ps ratio exhibited a rapid decrease of the backscattered intensity in time, both for BLG/AG and AF-BLG/AG mixtures, revealing rapid sedimentation/coalescence of particles. This precluded the achievement of a stable correlation function. For the 2:1 Pr:Ps ratio, mixtures exhibited both coalescence and sedimentation phenomena as confirmed by shifts in the g2(t) towards larger correlation times and the decrease of the initial value of g2(t) with time. Mixtures obtained for the 1:1 Pr:Ps ratio were characterised by small variations in the DWS signal, emphasising the stability of produced particles. The increase of the total biopolymer concentration reduced the effect of both Pr:Ps ratio and presence of protein aggregates. From CSLM and DWS observations, possible differences in the complex coacervation mechanism in both types of mixtures were highlighted. The use of protein aggregates to control complex coacervation was underlined.


Plant Cell and Environment | 2010

MtPM25 is an atypical hydrophobic late embryogenesis‐abundant protein that dissociates cold and desiccation‐aggregated proteins

Virginie Boucher; Julia Buitink; Xiaodong Lin; Julie Boudet; Folkert A. Hoekstra; Michaela Hundertmark; Denis Renard; Olivier Leprince

Late embryogenesis-abundant (LEA) proteins are one of the components involved in desiccation tolerance (DT) by maintaining cellular structures in the dry state. Among them, MtPM25, a member of the group 5 is specifically associated with DT in Medicago truncatula seeds. Its function is unknown and its classification as a LEA protein remains elusive. Here, evidence is provided that MtPM25 is a hydrophobic, intrinsically disordered protein that shares the characteristics of canonical LEA proteins. Screening protective activities by testing various substrates against freezing, heating and drying indicates that MtPM25 is unable to protect membranes but able to prevent aggregation of proteins during stress. Prevention of aggregation was also found for the water soluble proteome of desiccation-sensitive radicles. This inhibition was significantly higher than that of MtEM6, one of the most hydrophilic LEA protein associated with DT. Moreover, when added after the stress treatment, MtPM25 is able to rapidly dissolve aggregates in a non-specific manner. Sorption isotherms show that when it is unstructured, MtPM25 absorbs up to threefold more water than MtEM6. MtPM25 is likely to act as a protective molecule during drying and plays an additional role as a repair mechanism compared with other LEA proteins.


Plant Physiology | 2010

Binding Properties of the N-Acetylglucosamine and High-Mannose N-Glycan PP2-A1 Phloem Lectin in Arabidopsis

Julie Beneteau; Denis Renard; Laurent Marché; Elise Douville; Laurence Lavenant; Yvan Rahbé; Didier Dupont; Françoise Vilaine; Sylvie Dinant

Phloem Protein2 (PP2) is a component of the phloem protein bodies found in sieve elements. We describe here the lectin properties of the Arabidopsis (Arabidopsis thaliana) PP2-A1. Using a recombinant protein produced in Escherichia coli, we demonstrated binding to N-acetylglucosamine oligomers. Glycan array screening showed that PP2-A1 also bound to high-mannose N-glycans and 9-acyl-N-acetylneuraminic sialic acid. Fluorescence spectroscopy-based titration experiments revealed that PP2-A1 had two classes of binding site for N,N′,N″-triacetylchitotriose, a low-affinity site and a high-affinity site, promoting the formation of protein dimers. A search for structural similarities revealed that PP2-A1 aligned with the Cbm4 and Cbm22-2 carbohydrate-binding modules, leading to the prediction of a β-strand structure for its conserved domain. We investigated whether PP2-A1 interacted with phloem sap glycoproteins by first characterizing abundant Arabidopsis phloem sap proteins by liquid chromatography-tandem mass spectrometry. Then we demonstrated that PP2-A1 bound to several phloem sap proteins and that this binding was not completely abolished by glycosidase treatment. As many plant lectins have insecticidal activity, we also assessed the effect of PP2-A1 on weight gain and survival in aphids. Unlike other mannose-binding lectins, when added to an artificial diet, recombinant PP2-A1 had no insecticidal properties against Acyrthosiphon pisum and Myzus persicae. However, at mid-range concentrations, the protein affected weight gain in insect nymphs. These results indicate the presence in PP2-A1 of several carbohydrate-binding sites, with potentially different functions in the trafficking of endogenous proteins or in interactions with phloem-feeding insects.


International Journal of Pharmaceutics | 2002

Biopolymeric colloidal carriers for encapsulation or controlled release applications

Denis Renard; Paul Robert; Laurence Lavenant; D Melcion; Y. Popineau; Jacques Gueguen; C Duclairoir; E Nakache; Christian Sanchez; Christophe Schmitt

Biopolymers represent an interesting alternative to synthetic polymers in order to be used as structured carriers for controlled release and encapsulation applications. In particular, the ability of these carriers to entrap both hydrophilic and hydrophobic drugs may be very promising for many applications. In addition, the absence of chemical compounds and organic solvents used to produce biopolymeric matrices could be very interesting for some industrial applications. Simple or complex coacervation methods involving proteins or protein and polysaccharide mixtures were used to create new matrices dedicated to controlled release applications. Controlled release experiments with model compounds were conducted in order to evaluate the performance of such matrices. An alternative and promising research field deals with particles obtained from hydrogel systems. Totally transparent solid matrices resulting from the dehydration of new protein gels were formed and swelling capacities of these matrices were studied.


International Journal of Pharmaceutics | 2002

Stability and structure of protein–polysaccharide coacervates in the presence of protein aggregates

Christian Sanchez; Denis Renard

We have studied at pH 4.2 and three protein (Pr):polysaccharide (Pol) weight ratios (8:1, 2:1 and 1:1) the structure and stability of beta-lactoglobulin/acacia gum/water dispersions containing protein aggregates (BLG/AG/W) or free from aggregates (AF-BLG/AG/W). Phase diagrams were characteristic of complex coacervation. BLG/AG/W dispersions displayed a larger biphasic area than AF-BLG/AG/W dispersions, that moved towards the protein axis. It was concluded that protein aggregates affected complex coacervation both by entropic (size and molecular masses of aggregates) and enthalpic (surface properties of aggregates) effects. Laser light scattering measurements revealed that the particles diameter (d(43)) induced by demixing was controlled by protein aggregates in AF-BLG/AG/W dispersions. At 1 wt.% biopolymer concentration, particles were 15-20 times larger in AF-BLG/AG/W dispersions than in BLG/AG/W dispersions at (Pr:Pol) ratios of 2:1 or 1:1. Confocal scanning laser microscopy showed that AF-BLG/AG/W dispersions only contained spherical coacervates. BLG/AG/W dispersions contained both coacervates and aggregates coated with AG or/and BLG/AG coacervates. At a (Pr:Pol) ratio of 2:1 and 1:1, coacervates were vesicular or multivesicular. Coacervates were smaller in BLG/AG/W dispersions than in AF-BLG/AG/W dispersions. It was concluded that protein aggregates have the intrinsic ability to stabilize complex coacervates and could be used to design multifunctional delivery systems. This study showed that composite dispersions containing both protein aggregates embedded in protein-polysaccharide coacervates and free coacervates may be performed. In this respect, the design of protein aggregates with controlled size distribution and surface properties could open new possibilities both in the non-chemical control of coacervates stability and in the development of multifunctional delivery systems.


Plant Cell and Environment | 2012

Soluble and filamentous proteins in Arabidopsis sieve elements

Brigitte Batailler; Thomas Lemaître; Françoise Vilaine; Christian Sanchez; Denis Renard; Thibaud Cayla; Julie Beneteau; Sylvie Dinant

Phloem sieve elements are highly differentiated cells involved in the long-distance transport of photoassimilates. These cells contain both aggregated phloem-proteins (P-proteins) and soluble proteins, which are also translocated by mass flow. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to carry out a proteomic survey of the phloem exudate of Arabidopsis thaliana, collected by the ethylenediaminetetraacetic acid (EDTA)-facilitated method. We identified 287 proteins, a large proportion of which were enzymes involved in the metabolic precursor generation and amino acid synthesis, suggesting that sieve tubes display high levels of metabolic activity. RNA-binding proteins, defence proteins and lectins were also found. No putative P-proteins were detected in the EDTA-exudate fraction, indicating a lack of long-distance translocation of such proteins in Arabidopsis. In parallel, we investigated the organization of P-proteins, by high-resolution transmission electron microscopy, and the localization of the phloem lectin PP2, a putative P-protein component, by immunolocalization with antibodies against PP2-A1. Transmission electron microscopy observations of P-proteins revealed bundles of filaments resembling strings of beads. PP2-A1 was found weakly associated with these structures in the sieve elements and bound to plastids. These observations suggest that PP2-A1 is anchored to P-proteins and organelles rather than being a structural component of P-proteins.


Molecular Plant-microbe Interactions | 2010

Phloem Protein Partners of Cucurbit aphid borne yellows virus: Possible Involvement of Phloem Proteins in Virus Transmission by Aphids

B. Bencharki; S. Boissinot; S. Revollon; Véronique Ziegler-Graff; M. Erdinger; L. Wiss; Sylvie Dinant; Denis Renard; M. Beuve; C. Lemaitre-Guillier; V. Brault

Poleroviruses are phytoviruses strictly transmitted by phloem-feeding aphids in a circulative and nonpropagative mode. During ingestion, aphids sample virions in sieve tubes along with sap. Therefore, any sap protein bound to virions will be acquired by the insects and could potentially be involved in the transmission process. By developing in vitro virus-overlay assays on sap proteins collected from cucumber, we observed that approximately 20 proteins were able to bind to purified particles of Cucurbit aphid borne yellows virus (CABYV). Among them, eight proteins were identified by mass spectrometry. The role of two candidates belonging to the PP2-like family (predominant lectins found in cucurbit sap) in aphid transmission was further pursued by using purified orthologous PP2 proteins from Arabidopsis. Addition of these proteins to the virus suspension in the aphid artificial diet greatly increased virus transmission rate. This shift was correlated with an increase in the number of viral genomes in insect cells and with an increase of virion stability in vitro. Surprisingly, increase of the virus transmission rate was also monitored after addition of unrelated proteins in the aphid diet, suggesting that any soluble protein at sufficiently high concentration in the diet and acquired together with virions could stimulate virus transmission.


Biomacromolecules | 2012

Microfluidic generation and selective degradation of biopolymer-based Janus microbeads.

Mélanie Marquis; Denis Renard; Bernard Cathala

We describe a microfluidic approach for generating Janus microbeads from biopolymer hydrogels. A flow-focusing device was used to emulsify the coflow of aqueous solutions of one or two different biopolymers in an organic phase to synthesize homo or hetero Janus microbeads. Biopolymer gelation was initiated, in the chip, by diffusion-controlled ionic cross-linking of the biopolymers. Pectin-pectin (homo Janus) and, for the first time, pectin-alginate (hetero Janus) microbeads were produced. The efficiency of separation of the two hemispheres, which reflected mixing and convection phenomena, was investigated by confocal scanning laser microscopy (CSLM) of previously labeled biopolymers. The interface of the hetero Janus structure was clearly defined, whereas that of the homo Janus microbeads was poorly defined. The Janus structure was confirmed by subjecting each microbead hemisphere to specific enzymatic degradation. These new and original microbeads from renewable resources will open up opportunities for studying relationships between combined enzymatic hydrolysis and active compound release.


Carbohydrate Polymers | 2012

Structure of arabinogalactan-protein from Acacia gum: From porous ellipsoids to supramolecular architectures

Denis Renard; C. Garnier; A. Lapp; Christophe Schmitt; C. Sanchez

The structure of the arabinogalactan-protein (AGP) fraction of the gum exudate of Acacia senegal (gum Arabic) isolated from hydrophobic interaction chromatography was investigated using HPSEC-MALLS, small angle neutron scattering and TEM observations. Literature reported that the AGP structure of gum Arabic adopts a very compact conformation in solution due to the attachment of short arabinoside side chains and much larger blocks of carbohydrate to the polypeptidic backbone. The present study revealed that AGP in solution had a weight average molecular weight Mw of 1.86×10(6) g mol(-1) and a radius of gyration Rg of 30 nm. In addition, two exponent values were identified in the Rg, [η], Rh and ρ vs. Mw relationships highlighting two types of conformations depending on the molecular weight range considered: a low molar mass population with long-chain branching and a compact conformation and a high molar mass population with short-chain branching and an elongated conformation. AGP would behave in solution as a branched or hyper-branched polymer with conformations ranging from globular to elongated shape depending on the size of the carbohydrate branches. Small angle scattering form factor revealed an elongated average conformation corresponding to a triaxial ellipsoid while inverse Fourier transform of the scattering form factor gave a maximum dimension for AGP of 64 nm. Transmission electron microscopy highlighted the existence of two types of flat objects with thicknesses below 3-5 nm, single particles with a more or less anisotropic spheroidal shape and aggregated structures with a more elongated shape. A remarkable feature of all particle morphologies was the presence of an outer structure combined to an inner more or less porous network of interspersed chains or interacting structural blocks, as previously found for the arabinogalactan (AG) main molecular fraction of Acacia gum. However, clear differences were observed in the density and morphology of the inner porous network, probably highlighting differences in the degree of branching. The existence of assembled AG as part of the AGP family was confirmed using TEM micrographs at high resolution. Fused AGP dimers, trimers, tetramers and multimers were also identified. These molecular assemblies questioned about the nature of interactions involved.

Collaboration


Dive into the Denis Renard's collaboration.

Top Co-Authors

Avatar

Jacques Lefebvre

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Paul Robert

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laurence Lavenant

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mélanie Marquis

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Y. Popineau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Evandro Martins

Universidade Federal de Viçosa

View shared research outputs
Top Co-Authors

Avatar

Denis Poncelet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Joëlle Davy

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge