Denis Reynaud
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denis Reynaud.
FEBS Journal | 2006
Yi-Wei Huang; Mark C. Surka; Denis Reynaud; Cecil R. Pace-Asciak; William S. Trimble
Septins are a family of conserved proteins that are essential for cytokinesis in a wide range of organisms including fungi, Drosophila and mammals. In budding yeast, where they were first discovered, they are thought to form a filamentous ring at the bridge between the mother and bud cells. What regulates the assembly and function of septins, however, has remained obscure. All septins share a highly conserved domain related to those found in small GTPases, and septins have been shown to bind and hydrolyze GTP, although the properties of this domain and the relationship between polymerization and GTP binding/hydrolysis is unclear. Here we show that human septin 2 is phosphorylated in vivo at Ser218 by casein kinase II. In addition, we show that recombinant septin 2 binds guanine nucleotides with a Kd of 0.28 µm for GTPγS and 1.75 µm for GDP. It has a slow exchange rate of 7 × 10−5 s−1 for GTPγS and 5 × 10−4 s−1 for GDP, and an apparent kcat value of 2.7 × 10−4 s−1, similar to those of the Ras superfamily of GTPases. Interestingly, the nucleotide binding affinity appears to be altered by phosphorylation at Ser218. Finally, we show that a single septin protein can form homotypic filaments in vitro, whether bound to GDP or GTP.
Lipids | 1995
Cecil R. Pace-Asciak; Denis Reynaud; Peter Demin
This article reviews published evidence describing the enzymatic and nonenzymatic formation and the routes of metabolism of the hepoxilins. Also treated are the major approaches used for the chemical synthesis of these compounds and for some of their analogs.
Journal of Cardiovascular Pharmacology | 1999
Stephen D. Milone; Cecil R. Pace-Asciak; Denis Reynaud; Eduardo R. Azevedo; Gary E. Newton; John D. Parker
Tolerance to nitroglycerin (NTG) may be due to increased superoxide anion production. Hemodynamic parameters and biochemical markers of free radical production were measured in 20 healthy male subjects at baseline, 3 h after acute transdermal NTG (0.6 mg/h), and after 5 days of continuous therapy. Transdermal NTG therapy was continued, and 2 days later all subjects received 2 g of oral vitamin C, or placebo, in a double-blind, randomized, crossover fashion. In another study of eight male subjects, forearm plethysmography was used to assess the venous responses to sublingual NTG at baseline, after 5 days of sustained transdermal NTG therapy (0.6 mg/h), and after 2 g of oral vitamin C or placebo. Systolic blood pressure decreased in response to acute transdermal NTG therapy but returned to normal after sustained NTG therapy, indicating the development of tolerance. The venous volume responses to sublingual NTG were significantly diminished after sustained therapy with transdermal NTG. Plasma lipid peroxidation products, 8-iso-PGF2 alpha, and vitamin C were unchanged by acute and sustained therapy with transdermal NTG. Vitamin C failed to restore either the hemodynamic or venous effects of NTG. These results do not support the hypothesis that nitrate therapy and tolerance is associated with increased free radical production.
Biochimica et Biophysica Acta | 1999
Mei Mei Wang; Denis Reynaud; Cecil R. Pace-Asciak
In this study we set out to investigate whether the inflammatory agents, bradykinin (BK) and platelet activating factor (PAF), affect the lipoxygenase pathway in rat skin in vivo and whether the main products so formed may be involved in the inflammatory actions of these agents. In vitro preparations of epidermis were also investigated to determine whether lipoxygenases are stimulated by these agents. We also investigated the actions of arachidonic acid and 12(S)-HPETE as substrates for the lipoxygenases. Our results indicated that 12-lipoxygenase is actively and selectively stimulated in a dose-dependent way in both preparations by the administration of BK and PAF; the main product, 12-HETE, was shown by chiral analysis to be exclusively of the S-configuration, indicating that 12(S)-lipoxygenase was present in the rat skin and was stimulated by these inflammatory agents. Hepoxilins were also formed but to a lesser extent in both in vivo and in vitro preparations. In separate experiments, 12(S)-HETE administered intradermally on its own (40 ng/site), increased vascular permeability as also seen with bradykinin (100 ng/site) and PAF (10 ng/site). However, unlike previously observed with hepoxilin A3 administration, 12(S)-HETE did not stimulate the action of BK on vascular permeability, suggesting that the two compounds may have different mechanisms of action to enhance inflammation. These observations suggest that the vascular permeability and plasma extravasation observed with both inflammatory agents (BK and PAF) may be mediated at least in part through the activation of 12(S)-lipoxygenase, resulting in enhanced formation of 12(S)-HETE which causes acute inflammation.
Journal of Neurochemistry | 2008
Denis Reynaud; Isabelle Delton; Abdallah Gharib; Nicole Sarda; Michel Lagarde; Cecil R. Pace-Asciak
Abstract: The present study was undertaken to investigate the possible formation of hepoxilin A3 in the rat pineal gland and to study the potential physiological role for this compound in this tissue. Incubation of homogenates of rat pineal glands with arachidonic acid (66 μM) led to the appearance of hepoxilin A3 (HxA3) analyzed as its stable trihydroxy derivative, trioxilin A3 by gas chromatography in both the electron impact and negative ion chemical ionization modes. Endogenous formation of HxA3 is estimated to be 1.43 ± 0.66 ng//μg of protein. This amount is not modified when the tissue is boiled (2.07 ± 0.66 ng/μg of protein). However, the formation of this compound was stimulated to 21.26 ±5.82 ng/μg of protein when exogenous arachidonic acid was added to the homogenate. Addition of the dual cyclooxygenase/lipoxygenase inhibitor BW 755C (10 /μg) resulted in a partial blockade of hepoxilin formation. Using [1‐14C] H×A3, we demonstrated that the pineal gland contained hepoxilin epoxide hydrolase, which hydrolyzed HxA3 into trioxilin A3. This hydrolysis was inhibited by 1 μmol/L of 3, 3, 3‐trichloropropene‐1, 2‐oxide. In a separate study, HxA3 in the presence of 3, 3, 3‐trichloropropene‐1, 2‐oxide to block the hydrolysis of HxA3 decreased the production of cyclic AMP in cultured organ rat pineals after stimulation with 5′‐N‐ethylcarboxamidoadenosine, an A1/A2 adenosine receptor agonist. This effect is stereospecific because the (8S)‐enantiomer is more active in decreasing cyclic AMP production (−88.7%) than the (8R)‐enantiomer. This is the first demonstration of the presence, metabolism, and action of HxA3 in the rat pineal gland.
Journal of Lipid Research | 2017
John A. Bowden; Alan Heckert; Candice Z. Ulmer; Christina M. Jones; Jeremy P. Koelmel; Laila Abdullah; Linda Ahonen; Yazen Alnouti; Aaron M. Armando; John M. Asara; Takeshi Bamba; John R. Barr; Jonas Bergquist; Christoph H. Borchers; Joost Brandsma; Susanne B. Breitkopf; Tomas Cajka; Amaury Cazenave-Gassiot; Antonio Checa; Michelle A. Cinel; Romain A. Colas; Serge Cremers; Edward A. Dennis; James E. Evans; Alexander Fauland; Oliver Fiehn; Michael S. Gardner; Timothy J. Garrett; Katherine H. Gotlinger; Jun Han
As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950–Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra- and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium. While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.
Nutrition & Metabolism | 2010
Etienne Pouteau; Olivier Aprikian; Catherine Grenot; Denis Reynaud; Cecil R. Pace-Asciak; Claude Yves Cuilleron; Eurídice Castañeda-Gutiérrez; Julie Moulin; Gregory Pescia; Carine Beysen; Scott M. Turner; Katherine Macé
BackgroundThe composition of dietary fatty acids (FA) during early life may impact adult adipose tissue (AT) development. We investigated the effects of α-linolenic acid (ALA) intake during the suckling/weaning period on AT development and metabolic markers in the guinea pig (GP).MethodsNewborn GP were fed a 27%-fat diet (w/w %) with high (10%-ALA group), moderate (2.4%-ALA group) or low (0.8%-ALA group) ALA content (w/w % as total FA) until they were 21 days old (d21). Then all animals were switched to a 15%-fat diet containing 2% ALA (as total FA) until 136 days of age (d136).ResultsALA and docosapentaenoic acid measured in plasma triglycerides (TG) at d21 decreased with decreasing ALA intake. Total body fat mass was not different between groups at d21. Adipose tissue TG synthesis rates and proliferation rate of total adipose cells, as assessed by 2H2O labelling, were unchanged between groups at d21, while hepatic de novo lipogenesis was significantly 2-fold increased in the 0.8%-ALA group. In older GP, the 0.8%-ALA group showed a significant 15-%-increased total fat mass (d79 and d107, p < 0.01) and epididymal AT weight (d136) and tended to show higher insulinemia compared to the 10%-ALA group. In addition, proliferation rate of cells in the subcutaneous AT was higher in the 0.8%-ALA (15.2 ± 1.3% new cells/5d) than in the 10%-ALA group (8.6 ± 1.7% new cells/5d, p = 0.021) at d136. AT eicosanoid profiles were not associated with the increase of AT cell proliferation.ConclusionA low ALA intake during early postnatal life promotes an increased adiposity in the adult GP.
Journal of Biological Chemistry | 1999
Denis Reynaud; Muslim Ali; Peter Demin; Cecil R. Pace-Asciak
We report herein for the first time the formation by freshly grown garlic roots and the structural characterization of 14,15-epoxide positional analogs of the hepoxilins formed via the 15-lipoxygenase-induced oxygenation of arachidonic acid. These compounds are formed through the combined actions of a 15(S)-lipoxygenase and a hydroperoxyeicosatetraenoic acid (HPETE) isomerase. The compounds were formed when either arachidonic acid or 15-HPETE were used as substrates. Both the “A”-type and the “B”-type products are formed although the B-type compounds are formed in greater relative quantities. Chiral phase high performance liquid chromatography analysis confirmed the formation of hepoxilins from 15(S)- but not 15(R)-HPETE, indicating high stereoselectivity of the isomerase. Additionally, the lipoxygenase was of the 15(S)-type as only 15(S)-hydroxyeicosatetraenoic acid was formed when arachidonic acid was used as substrate. The structures of the products were confirmed by gas chromatography-mass spectrometry of the methyl ester trimethylsilyl ether derivatives as well as after characteristic epoxide ring opening catalytically with hydrogen leading to dihydroxy products. That 15(S)-lipoxygenase activity is of functional importance in garlic was shown by the inhibition of root growth by BW 755C, a dual cyclooxygenase/lipoxygenase inhibitor and nordihydroguaiaretic acid, a lipoxygenase inhibitor. Additional biological studies were carried out with the purified intact 14(S),15(S)-hepoxilins, which were investigated for hepoxilin-like actions in causing the release of intracellular calcium in human neutrophils. The 14,15-hepoxilins dose-dependently caused a rise in cytosolic calcium, but their actions were 5–10-fold less active than 11(S),12(S)-hepoxilins derived from 12(S)-HPETE. These studies provide evidence that 15(S)-lipoxygenase is functionally important to normal root growth and that HPETE isomerization into the hepoxilin-like structure may be ubiquitous; the hepoxilin-evoked release of calcium in human neutrophils, which is receptor-mediated, is sensitive to the location within the molecule of the hydroxyepoxide functionality.
Biochimica et Biophysica Acta | 1997
Denis Reynaud; Olga Rounova; Peter M. Demin; Kazimir K Pivnitsky; Cecil R. Pace-Asciak
Hepoxilin A3-methyl ester is taken up by intact human neutrophils where it is first hydrolyzed into the free acid which is subsequently converted into a single major metabolite. The structure of this metabolite was determined through mass spectral analysis of several derivatives, and through identity with an authentic compound prepared by chemical synthesis. The metabolite was identified as omega-hydroxy-hepoxilin A3 showing that the epoxide functionality of the parent hepoxilin is not opened during incubation with human neutrophils. All attempts to investigate hepoxilin metabolism in broken cells, despite the presence of protease inhibitors (Aproteinin, PMSF, DFP) and supplementation with NADPH were unsuccessful. Metabolism of hepoxilin A3 required the intact cell, while parallel experiments with LTB4 as substrate demonstrated that this eicosanoid was metabolized into its omega-hydroxy metabolite regardless of whether intact or broken cell preparations were used provided that NADPH was present in the latter. Hepoxilin metabolism in intact cells was inhibited dose-dependently by CCCP (0.01-100 microM), a mitochondrial uncoupler, whereas LTB4 metabolism was unaffected by CCCP. This data suggests that metabolism of hepoxilin A3 occurs in intact human neutrophils through omega-oxidation, is likely located in the mitochondrial compartment of the cell (inhibition by CCCP) and is carried out by an activity that is independent of the well characterized, relatively stable microsomal LTB4 omega-hydroxylase.
Journal of Lipid Mediators and Cell Signalling | 1996
Peter Demin; Denis Reynaud; Cecil R. Pace-Asciak
A novel analog of hepoxilin A3 has been chemically synthesized in which the 11,12-epoxide group has been altered to a thiirano group. This has been accomplished through allylic rearrangement of unnatural (11 R, 12 R)-hepoxilin B3 under Mitsunobu conditions, first into unnatural (11 R, 12 R)-hepoxilin A3, followed by conversion of this compound with inversion of the epoxide centers into the thiirano-hepoxilin A3 having the natural 11 S, 12 S configuration. We also report herein evidence showing that thiirano-hepoxilin A3 raises intracellular calcium concentrations in intact human neutrophils.