Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis S. Willett is active.

Publication


Featured researches published by Denis S. Willett.


Scientific Reports | 2015

Social Networks of Educated Nematodes.

Denis S. Willett; Hans T. Alborn; Larry W. Duncan; Lukasz L. Stelinski

Entomopathogenic nematodes are obligate lethal parasitoids of insect larvae that navigate a chemically complex belowground environment while interacting with their insect hosts, plants, and each other. In this environment, prior exposure to volatile compounds appears to prime nematodes in a compound specific manner, increasing preference for volatiles they previously were exposed to and decreasing attraction to other volatiles. In addition, persistence of volatile exposure influences this response. Longer exposure not only increases preference, but also results in longer retention of that preference. These entomopathogenic nematodes display interspecific social behavioral plasticity; experienced nematodes influence the behavior of different species. This interspecific social behavioral plasticity suggests a mechanism for rapid adaptation of belowground communities to dynamic environments.


PLOS ONE | 2016

Stimulation of the Salicylic Acid Pathway Aboveground Recruits Entomopathogenic Nematodes Belowground

Camila Cramer Filgueiras; Denis S. Willett; Alcides Moino Junior; Martín Pareja; Fahiem El Borai; D. W. Dickson; Lukasz L. Stelinski; Larry W. Duncan

Plant defense pathways play a critical role in mediating tritrophic interactions between plants, herbivores, and natural enemies. While the impact of plant defense pathway stimulation on natural enemies has been extensively explored aboveground, belowground ramifications of plant defense pathway stimulation are equally important in regulating subterranean pests and still require more attention. Here we investigate the effect of aboveground stimulation of the salicylic acid pathway through foliar application of the elicitor methyl salicylate on belowground recruitment of the entomopathogenic nematode, Steinernema diaprepesi. Also, we implicate a specific root-derived volatile that attracts S. diaprepesi belowground following aboveground plant stimulation by an elicitor. In four-choice olfactometer assays, citrus plants treated with foliar applications of methyl salicylate recruited S. diaprepesi in the absence of weevil feeding as compared with negative controls. Additionally, analysis of root volatile profiles of citrus plants receiving foliar application of methyl salicylate revealed production of d-limonene, which was absent in negative controls. The entomopathogenic nematode S. diaprepesi was recruited to d-limonene in two-choice olfactometer trials. These results reinforce the critical role of plant defense pathways in mediating tritrophic interactions, suggest a broad role for plant defense pathway signaling belowground, and hint at sophisticated plant responses to pest complexes.


Journal of Chemical Ecology | 2016

Disruption of Vector Host Preference with Plant Volatiles May Reduce Spread of Insect-Transmitted Plant Pathogens

Xavier Martini; Denis S. Willett; Emily H. Kuhns; Lukasz L. Stelinski

Plant pathogens can manipulate the odor of their host; the odor of an infected plant is often attractive to the plant pathogen vector. It has been suggested that this odor-mediated manipulation attracts vectors and may contribute to spread of disease; however, this requires further broad demonstration among vector-pathogen systems. In addition, disruption of this indirect chemical communication between the pathogen and the vector has not been attempted. We present a model that demonstrates how a phytophathogen (Candidatus Liberibacter asiaticus) can increase its spread by indirectly manipulating the behavior of its vector (Asian citrus psyllid, Diaphorina citri Kuwayama). The model indicates that when vectors are attracted to pathogen-infected hosts, the proportion of infected vectors increases, as well as, the proportion of infected hosts. Additionally, the peak of infected host populations occurs earlier as compared with controls. These changes in disease dynamics were more important during scenarios with higher vector mortality. Subsequently, we conducted a series of experiments to disrupt the behavior of the Asian citrus psyllid. To do so, we exposed the vector to methyl salicylate, the major compound released following host infection with the pathogen. We observed that during exposure or after pre-exposure to methyl salicylate, the host preference can be altered; indeed, the Asian citrus psyllids were unable to select infected hosts over uninfected counterparts. We suggest mechanisms to explain these interactions and potential applications of disrupting herbivore host preference with plant volatiles for sustainable management of insect vectors.


Journal of Experimental Botany | 2018

Commercial hybrids and mutant genotypes reveal complex protective roles for inducible terpenoid defenses in maize

Shawn A. Christensen; James Sims; Martha Vaughan; Charles T. Hunter; Anna Block; Denis S. Willett; Hans T. Alborn; Alisa Huffaker; Eric A. Schmelz

Plant defense research is facilitated by the use of genome-sequenced inbred lines; however, a foundational knowledge of interactions in commercial hybrids remains relevant to understanding mechanisms present in crops. Using an array of commercial maize hybrids, we quantified the accumulation patterns of defense-related metabolites and phytohormones in tissues challenged with diverse fungal pathogens. Across hybrids, Southern leaf blight (Cochliobolus heterostrophus) strongly elicited specific sesqui- and diterpenoid defenses, namely zealexin A4 (ZA4) and kauralexin diacids, compared with the stalk-rotting agents Fusarium graminearum and Colletotrichum graminicola. With respect to biological activity, ZA4 and kauralexin diacids demonstrated potent antimicrobial action against F. graminearum. Unexpectedly, ZA4 displayed an opposite effect on C. graminicola by promoting growth. Overall, a negative correlation was observed between total analyzed terpenoids and fungal growth. Statistical analyses highlighted kauralexin A3 and abscisic acid as metabolites most associated with fungal suppression. As an empirical test, mutants of the ent-copalyl diphosphate synthase Anther ear 2 (An2) lacking kauralexin biosynthetic capacity displayed increased susceptibility to C. heterostrophus and Fusarium verticillioides. Our results highlight a widely occurring defensive function of acidic terpenoids in commercial hybrids and the complex nature of elicited pathway products that display selective activities on fungal pathogen species.


Scientific Reports | 2017

Multitrophic Effects of Belowground Parasitoid Learning

Denis S. Willett; Hans T. Alborn; Lukasz L. Stelinski

The ability to learn allows organisms to take advantage of dynamic and ephemeral opportunities in their environment. Here we show that learning in belowground entomopathogenic nematodes has cascading multitrophic effects on their hosts, other nematodes, and nematophagous fungal predators. In addition to quantifying these effects, we show that social behavioral plasticity in these belowground parasitoids can amplify signaling by plant defense pathways and results in an almost doubling of insect herbivore infection by entomopathogenic nematodes. Cumulatively, these effects point to the critical role of plant signaling in regulating community structure while suggesting an equally important role for behavioral plasticity in shaping community dynamics.


PLOS Computational Biology | 2016

Machine Learning for Characterization of Insect Vector Feeding

Denis S. Willett; Justin George; Nora S. Willett; Lukasz L. Stelinski; Stephen L. Lapointe

Insects that feed by ingesting plant and animal fluids cause devastating damage to humans, livestock, and agriculture worldwide, primarily by transmitting pathogens of plants and animals. The feeding processes required for successful pathogen transmission by sucking insects can be recorded by monitoring voltage changes across an insect-food source feeding circuit. The output from such monitoring has traditionally been examined manually, a slow and onerous process. We taught a computer program to automatically classify previously described insect feeding patterns involved in transmission of the pathogen causing citrus greening disease. We also show how such analysis contributes to discovery of previously unrecognized feeding states and can be used to characterize plant resistance mechanisms. This advance greatly reduces the time and effort required to analyze insect feeding, and should facilitate developing, screening, and testing of novel intervention strategies to disrupt pathogen transmission affecting agriculture, livestock and human health.


Royal Society Open Science | 2017

Concurrence in the ability for lipid synthesis between life stages in insects

Bertanne Visser; Denis S. Willett; Jeffrey A. Harvey; Hans T. Alborn

The ability to synthesize lipids is critical for an organism’s fitness; hence, metabolic pathways, underlying lipid synthesis, tend to be highly conserved. Surprisingly, the majority of parasitoids deviate from this general metabolic model by lacking the ability to convert sugars and other carbohydrates into lipids. These insects spend the first part of their life feeding and developing in or on an arthropod host, during which they can carry over a substantial amount of lipid reserves. While many parasitoid species have been tested for lipogenic ability at the adult life stage, it has remained unclear whether parasitoid larvae can synthesize lipids. Here we investigate whether or not several insects can synthesize lipids during the larval stage using three ectoparasitic wasps (developing on the outside of the host) and the vinegar fly Drosophila melanogaster that differ in lipogenic ability in the adult life stage. Using feeding experiments and stable isotope tracing with gas chromatography/mass spectrometry, we first confirm lipogenic abilities in the adult life stage. Using topical application of stable isotopes in developing larvae, we then provide clear evidence of concurrence in lipogenic ability between larval and adult life stages in all species tested.


Scientific Reports | 2016

Eliciting maize defense pathways aboveground attracts belowground biocontrol agents

Camila Cramer Filgueiras; Denis S. Willett; Ramom Vasconcelos Pereira; Alcides Moino Junior; Martín Pareja; Larry W. Duncan

Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems.


Biocontrol Science and Technology | 2017

Parameters affecting plant defense pathway mediated recruitment of entomopathogenic nematodes

Camila Cramer Filgueiras; Denis S. Willett; Ramom Vasconcelos Pereira; Paulo Henrique de Siqueira Sabino; Alcides Moino Junior; Martín Pareja; D. W. Dickson

ABSTRACT Entomopathogenic nematodes are natural enemies and effective biological control agents of subterranean insect herbivores. Interactions between herbivores, plants, and entomopathogenic nematodes are mediated by plant defense pathways. These pathways can induce release of volatiles and recruit entomopathogenic nematodes. Stimulation of these plant defense pathways for induced defense against belowground herbivory may enhance biological control in the field. Knowledge of the factors affecting entomopathogenic nematode behaviour belowground is needed to effectively implement such strategies. To that end, we explore the effect of elicitor, elicitor dose, mechanical damage, and entomopathogenic nematode release distance on recruitment of entomopathogenic nematode infective juveniles to corn seedlings. Increasing doses of methyl jasmonate and methyl salicylate elicitors recruited more entomopathogenic nematodes as did mechanical damage. Recruitment of entomopathogenic nematodes was higher at greater release distances. These results suggest entomopathogenic nematodes are highly tuned to plant status and present a strategy for enhancing biological control using elicitor-stimulated recruitment of entomopathogenic nematodes.


Biocontrol | 2016

High throughput nematode counting with automated image processing

Bo H. Holladay; Denis S. Willett; Lukasz L. Stelinski

Nematode counting forms the basis for almost every assay in nematology: population surveys and culture density estimates all rely on accurate, rapid nematode counting. Accurate, rapid nematode counting is especially important for bioassays of entomopathogenic nematodes used for biological control. While manual microscope-based counting has traditionally been the standard, automated image processing holds promise for high-throughput nematode counting. Here we develop image capture and processing techniques to facilitate standard curve development and automated counting of two species of entomopathogenic nematodes. The techniques not only produce accurate nematode counts but also are rapid: timesavings over traditional manual counting are large and increase with increasing sample size. These techniques will likely be generally useful for quantification of all nematode species and potentially other small animals requiring quantification using microscopy.

Collaboration


Dive into the Denis S. Willett's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans T. Alborn

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Alcides Moino Junior

Universidade Federal de Lavras

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martín Pareja

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

John J. Beck

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alisa Huffaker

University of California

View shared research outputs
Top Co-Authors

Avatar

Anna Block

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Charles T. Hunter

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge