Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis Tvorogov is active.

Publication


Featured researches published by Denis Tvorogov.


Nature Cell Biology | 2011

VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling

Tuomas Tammela; Georgia Zarkada; Harri Nurmi; Lars Jakobsson; Krista Heinolainen; Denis Tvorogov; Wei Zheng; Claudio A. Franco; Aino Murtomäki; Evelyn Aranda; Naoyuki Miura; Seppo Ylä-Herttuala; Marcus Fruttiger; Taija Makinen; Anne Eichmann; Jeffrey W. Pollard; Holger Gerhardt; Kari Alitalo

Angiogenesis, the growth of new blood vessels, involves specification of endothelial cells to tip cells and stalk cells, which is controlled by Notch signalling, whereas vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 have been implicated in angiogenic sprouting. Surprisingly, we found that endothelial deletion of Vegfr3, but not VEGFR-3-blocking antibodies, postnatally led to excessive angiogenic sprouting and branching, and decreased the level of Notch signalling, indicating that VEGFR-3 possesses passive and active signalling modalities. Furthermore, macrophages expressing the VEGFR-3 and VEGFR-2 ligand VEGF-C localized to vessel branch points, and Vegfc heterozygous mice exhibited inefficient angiogenesis characterized by decreased vascular branching. FoxC2 is a known regulator of Notch ligand and target gene expression, and Foxc2+/−;Vegfr3+/− compound heterozygosity recapitulated homozygous loss of Vegfr3. These results indicate that macrophage-derived VEGF-C activates VEGFR-3 in tip cells to reinforce Notch signalling, which contributes to the phenotypic conversion of endothelial cells at fusion points of vessel sprouts.


Cancer Cell | 2010

Effective Suppression of Vascular Network Formation by Combination of Antibodies Blocking VEGFR Ligand Binding and Receptor Dimerization

Denis Tvorogov; Andrey Anisimov; Wei Zheng; Veli-Matti Leppänen; Tuomas Tammela; Simonas Laurinavičius; Wolfgang Holnthoner; Hanna Heloterä; Tanja Holopainen; Michael Jeltsch; Nisse Kalkkinen; Hilkka Lankinen; Päivi M. Ojala; Kari Alitalo

Antibodies that block vascular endothelial growth factor (VEGF) have become an integral part of antiangiogenic tumor therapy, and antibodies targeting other VEGFs and receptors (VEGFRs) are in clinical trials. Typically receptor-blocking antibodies are targeted to the VEGFR ligand-binding site. Here we describe a monoclonal antibody that inhibits VEGFR-3 homodimer and VEGFR-3/VEGFR-2 heterodimer formation, signal transduction, as well as ligand-induced migration and sprouting of microvascular endothelial cells. Importantly, we show that combined use of antibodies blocking ligand binding and receptor dimerization improves VEGFR inhibition and results in stronger inhibition of endothelial sprouting and vascular network formation in vivo. These results suggest that receptor dimerization inhibitors could be used to enhance antiangiogenic activity of antibodies blocking ligand binding in tumor therapy.


Circulation | 2014

CCBE1 Enhances Lymphangiogenesis via A Disintegrin and Metalloprotease With Thrombospondin Motifs-3–Mediated Vascular Endothelial Growth Factor-C Activation

Michael Jeltsch; Sawan Kumar Jha; Denis Tvorogov; Andrey Anisimov; Veli-Matti Leppänen; Tanja Holopainen; Riikka Kivelä; Sagrario Ortega; Terhi Karpanen; Kari Alitalo

Background —Hennekam lymphangiectasia-lymphedema syndrome (OMIM 235510) is a rare autosomal recessive disease, which is associated with mutations in the collagen- and calcium-binding EGF domains 1 ( CCBE1 ) gene. Because of the striking phenotypic similarity of embryos lacking either the Ccbe1 gene or the lymphangiogenic growth factor Vegfc gene, we searched for CCBE1 interactions with the VEGF-C growth factor signaling pathway, which is critical in embryonic and adult lymphangiogenesis. Methods and Results —By analyzing VEGF-C produced by CCBE1-transfected cells, we found that while CCBE1 itself does not process VEGF-C, it promotes proteolytic cleavage of the otherwise poorly active 29/31-kDa form of VEGF-C by the A disintegrin and metalloprotease with thrombospondin motifs-3 (ADAMTS3) protease, resulting in the mature 21/23-kDa form of VEGF-C, which induces increased VEGF-C receptor signaling. Adeno-associated viral vector (AAV) mediated transduction of CCBE1 into mouse skeletal muscle enhanced lymphangiogenesis and angiogenesis induced by AAV-VEGF-C. Conclusions —These results identify ADAMTS3 as a VEGF-C activating protease and reveal a novel type of regulation of a vascular growth factor by a protein that enhances its proteolytic cleavage and activation. The results suggest CCBE1 is a potential therapeutic tool for the modulation of lymphangiogenesis and angiogenesis in a variety of diseases that involve the lymphatic system, such as lymphedema or lymphatic metastasis.Background— Hennekam lymphangiectasia–lymphedema syndrome (Online Mendelian Inheritance in Man 235510) is a rare autosomal recessive disease, which is associated with mutations in the CCBE1 gene. Because of the striking phenotypic similarity of embryos lacking either the Ccbe1 gene or the lymphangiogenic growth factor Vegfc gene, we searched for collagen- and calcium-binding epidermal growth factor domains 1 (CCBE1) interactions with the vascular endothelial growth factor-C (VEGF-C) growth factor signaling pathway, which is critical in embryonic and adult lymphangiogenesis. Methods and Results— By analyzing VEGF-C produced by CCBE1-transfected cells, we found that, whereas CCBE1 itself does not process VEGF-C, it promotes proteolytic cleavage of the otherwise poorly active 29/31-kDa form of VEGF-C by the A disintegrin and metalloprotease with thrombospondin motifs-3 protease, resulting in the mature 21/23-kDa form of VEGF-C, which induces increased VEGF-C receptor signaling. Adeno-associated viral vector–mediated transduction of CCBE1 into mouse skeletal muscle enhanced lymphangiogenesis and angiogenesis induced by adeno-associated viral vector–VEGF-C. Conclusions— These results identify A disintegrin and metalloprotease with thrombospondin motifs-3 as a VEGF-C–activating protease and reveal a novel type of regulation of a vascular growth factor by a protein that enhances its proteolytic cleavage and activation. The results suggest that CCBE1 is a potential therapeutic tool for the modulation of lymphangiogenesis and angiogenesis in a variety of diseases that involve the lymphatic system, such as lymphedema or lymphatic metastasis.


Circulation | 2014

CCBE1 Enhances Lymphangiogenesis via ADAMTS3-Mediated VEGF-C Activation

Michael Jeltsch; Sawan Kumar Jha; Denis Tvorogov; Andrey Anisimov; Veli-Matti Leppänen; Tanja Holopainen; Riikka Kivelä; Sagrario Ortega; Terhi Karpanen; Kari Alitalo

Background —Hennekam lymphangiectasia-lymphedema syndrome (OMIM 235510) is a rare autosomal recessive disease, which is associated with mutations in the collagen- and calcium-binding EGF domains 1 ( CCBE1 ) gene. Because of the striking phenotypic similarity of embryos lacking either the Ccbe1 gene or the lymphangiogenic growth factor Vegfc gene, we searched for CCBE1 interactions with the VEGF-C growth factor signaling pathway, which is critical in embryonic and adult lymphangiogenesis. Methods and Results —By analyzing VEGF-C produced by CCBE1-transfected cells, we found that while CCBE1 itself does not process VEGF-C, it promotes proteolytic cleavage of the otherwise poorly active 29/31-kDa form of VEGF-C by the A disintegrin and metalloprotease with thrombospondin motifs-3 (ADAMTS3) protease, resulting in the mature 21/23-kDa form of VEGF-C, which induces increased VEGF-C receptor signaling. Adeno-associated viral vector (AAV) mediated transduction of CCBE1 into mouse skeletal muscle enhanced lymphangiogenesis and angiogenesis induced by AAV-VEGF-C. Conclusions —These results identify ADAMTS3 as a VEGF-C activating protease and reveal a novel type of regulation of a vascular growth factor by a protein that enhances its proteolytic cleavage and activation. The results suggest CCBE1 is a potential therapeutic tool for the modulation of lymphangiogenesis and angiogenesis in a variety of diseases that involve the lymphatic system, such as lymphedema or lymphatic metastasis.Background— Hennekam lymphangiectasia–lymphedema syndrome (Online Mendelian Inheritance in Man 235510) is a rare autosomal recessive disease, which is associated with mutations in the CCBE1 gene. Because of the striking phenotypic similarity of embryos lacking either the Ccbe1 gene or the lymphangiogenic growth factor Vegfc gene, we searched for collagen- and calcium-binding epidermal growth factor domains 1 (CCBE1) interactions with the vascular endothelial growth factor-C (VEGF-C) growth factor signaling pathway, which is critical in embryonic and adult lymphangiogenesis. Methods and Results— By analyzing VEGF-C produced by CCBE1-transfected cells, we found that, whereas CCBE1 itself does not process VEGF-C, it promotes proteolytic cleavage of the otherwise poorly active 29/31-kDa form of VEGF-C by the A disintegrin and metalloprotease with thrombospondin motifs-3 protease, resulting in the mature 21/23-kDa form of VEGF-C, which induces increased VEGF-C receptor signaling. Adeno-associated viral vector–mediated transduction of CCBE1 into mouse skeletal muscle enhanced lymphangiogenesis and angiogenesis induced by adeno-associated viral vector–VEGF-C. Conclusions— These results identify A disintegrin and metalloprotease with thrombospondin motifs-3 as a VEGF-C–activating protease and reveal a novel type of regulation of a vascular growth factor by a protein that enhances its proteolytic cleavage and activation. The results suggest that CCBE1 is a potential therapeutic tool for the modulation of lymphangiogenesis and angiogenesis in a variety of diseases that involve the lymphatic system, such as lymphedema or lymphatic metastasis.


American Journal of Pathology | 2010

Akt/Protein Kinase B Is Required for Lymphatic Network Formation, Remodeling, and Valve Development

Fei Zhou; Zai Chang; Luqing Zhang; Young-Kwon Hong; Bin Shen; Bo Wang; Fan Zhang; Guangming Lu; Denis Tvorogov; Kari Alitalo; Brian A. Hemmings; Zhongzhou Yang; Yulong He

Akt-mediated signaling plays an important role in blood vascular development. In this study, we investigated the role of Akt in lymphatic growth using Akt-deficient mice. First, we found that lymphangiogenesis occurred in Akt1(-/-), Akt2(-/-), and Akt3(-/-) mice. However, both the diameter and endothelial cell number of lymphatic capillaries were significantly less in Akt1(-/-) mice than in wild-type control mice, whereas there was only a slight change in Akt2(-/-) and Akt3(-/-) mice. Second, valves present in the small collecting lymphatics in the superficial dermal layer of the ear skin were rarely observed in Akt1(-/-) mice, although these valves could be detected in the large collecting lymphatics in the deep layer of the skin tissues. A fluorescence microlymphangiography assay showed that the skin lymphatic network in Akt1(-/-) mice was functional but abnormal as shown by fluorescein isothiocyanate-dextran draining. There was an uncharacteristic enlargement of collecting lymphatic vessels, and further analysis showed that smooth muscle cell coverage of collecting lymphatic vessels became much more sparse in Akt1-deficient mice than in wild-type control animals. Finally, we showed that lymphatic vessels were detected in compound Akt-null mice and that lymphangiogenesis could be induced by vascular endothelial growth factor-C delivered via adenoviral vectors in adult mice lacking Akt1. These results indicate that despite the compensatory roles of other Akt isoforms, Akt1 is more critically required during lymphatic development.


Blood | 2011

Structural determinants of vascular endothelial growth factor-D receptor binding and specificity

Veli-Matti Leppänen; Michael Jeltsch; Andrey Anisimov; Denis Tvorogov; Kukka Aho; Nisse Kalkkinen; Pyry I. Toivanen; Seppo Ylä-Herttuala; Kurt Ballmer-Hofer; Kari Alitalo

Vascular endothelial growth factors (VEGFs) and their tyrosine kinase receptors (VEGFR-1-3) are central mediators of angiogenesis and lymphangiogenesis. VEGFR-3 ligands VEGF-C and VEGF-D are produced as precursor proteins with long N- and C-terminal propeptides and show enhanced VEGFR-2 and VEGFR-3 binding on proteolytic removal of the propeptides. Two different proteolytic cleavage sites have been reported in the VEGF-D N-terminus. We report here the crystal structure of the human VEGF-D Cys117Ala mutant at 2.9 Å resolution. Comparison of the VEGF-D and VEGF-C structures shows similar extended N-terminal helices, conserved overall folds, and VEGFR-2 interacting residues. Consistent with this, the affinity and the thermodynamic parameters for VEGFR-2 binding are very similar. In comparison with VEGF-C structures, however, the VEGF-D N-terminal helix was extended by 2 more turns because of a better resolution. Both receptor binding and functional assays of N-terminally truncated VEGF-D polypeptides indicated that the residues between the reported proteolytic cleavage sites are important for VEGF-D binding and activation of VEGFR-3, but not of VEGFR-2. Thus, we define here a VEGFR-2-specific form of VEGF-D that is angiogenic but not lymphangiogenic. These results provide important new insights into VEGF-D structure and function.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Structural and mechanistic insights into VEGF receptor 3 ligand binding and activation

Veli-Matti Leppänen; Denis Tvorogov; Kaisa Kisko; Andrea E. Prota; Michael Jeltsch; Andrey Anisimov; Sandra Markovic-Mueller; Edward Stuttfeld; Kenneth N. Goldie; Kurt Ballmer-Hofer; Kari Alitalo

Vascular endothelial growth factors (VEGFs) and their receptors (VEGFRs) are key drivers of blood and lymph vessel formation in development, but also in several pathological processes. VEGF-C signaling through VEGFR-3 promotes lymphangiogenesis, which is a clinically relevant target for treating lymphatic insufficiency and for blocking tumor angiogenesis and metastasis. The extracellular domain of VEGFRs consists of seven Ig homology domains; domains 1–3 (D1-3) are responsible for ligand binding, and the membrane-proximal domains 4–7 (D4-7) are involved in structural rearrangements essential for receptor dimerization and activation. Here we analyzed the crystal structures of VEGF-C in complex with VEGFR-3 domains D1-2 and of the VEGFR-3 D4-5 homodimer. The structures revealed a conserved ligand-binding interface in D2 and a unique mechanism for VEGFR dimerization and activation, with homotypic interactions in D5. Mutation of the conserved residues mediating the D5 interaction (Thr446 and Lys516) and the D7 interaction (Arg737) compromised VEGF-C induced VEGFR-3 activation. A thermodynamic analysis of VEGFR-3 deletion mutants showed that D3, D4-5, and D6-7 all contribute to ligand binding. A structural model of the VEGF-C/VEGFR-3 D1-7 complex derived from small-angle X-ray scattering data is consistent with the homotypic interactions in D5 and D7. Taken together, our data show that ligand-dependent homotypic interactions in D5 and D7 are essential for VEGFR activation, opening promising possibilities for the design of VEGFR-specific drugs.


Journal of Biological Chemistry | 2009

Somatic mutations of ERBB4: Selective loss-of-function phenotype affecting signal transduction pathways in cancer

Denis Tvorogov; Maria Sundvall; Kari Kurppa; Maija Hollmén; Mark S. Johnson; Klaus Elenius

Cancer drugs targeting ErbB receptors, such as epidermal growth factor receptor and ErbB2, are currently in clinical use. However, the role of ErbB4 as a potential cancer drug target has remained controversial. Recently, somatic mutations altering the coding region of ErbB4 were described in patients with breast, gastric, colorectal, or non-small cell lung cancer, but the functional significance of these mutations is unknown. Here we demonstrate that 2 of 10 of the cancer-associated mutations of ErbB4 lead to loss of ErbB4 kinase activity due to disruption of functionally important structural features. Interestingly, the kinase-dead ErbB4 mutants were as efficient as wild-type ErbB4 in forming a heterodimeric neuregulin receptor with ErbB2 and promoting phosphorylation of Erk1/2 and Akt in an ErbB2 kinase-dependent manner. However, the mutant ErbB4 receptors failed to phosphorylate STAT5 and suppressed differentiation of MDA-MB-468 mammary carcinoma cells. These findings suggest that the somatic ErbB4 mutations have functional consequences and lead to selective changes in ErbB4 signaling.


Molecular Biology of the Cell | 2010

Cell Death or Survival Promoted by Alternative Isoforms of ErbB4

Maria Sundvall; Ville Veikkolainen; Kari Kurppa; Zaidoun Salah; Denis Tvorogov; E. Joop van Zoelen; Rami I. Aqeilan; Klaus Elenius

The report demonstrates that two distinct isoforms of the ErbB4 receptor tyrosine kinase stimulate either proliferation or apoptosis by mechanisms involving differential transcriptional regulation of the PDGFRA gene. These data have implications for developing approaches to target ErbB4 signaling in cancer.


Circulation | 2013

Vascular Endothelial Growth Factor-Angiopoietin Chimera With Improved Properties for Therapeutic Angiogenesis

Andrey Anisimov; Denis Tvorogov; Annamari Alitalo; Veli-Matti Leppänen; Yuri An; Eun Chun Han; Fabrizio Orsenigo; Emília Ilona Gaál; Tanja Holopainen; Young Jun Koh; Tuomas Tammela; Petra Korpisalo; Salla Keskitalo; Michael Jeltsch; Seppo Ylä-Herttuala; Elisabetta Dejana; Gou Young Koh; Chulhee Choi; Pipsa Saharinen; Kari Alitalo

Background— There is an unmet need for proangiogenic therapeutic molecules for the treatment of tissue ischemia in cardiovascular diseases. However, major inducers of angiogenesis such as vascular endothelial growth factor (VEGF/VEGF-A) have side effects that limit their therapeutic utility in vivo, especially at high concentrations. Angiopoietin-1 has been considered to be a blood vessel stabilization factor that can inhibit the intrinsic property of VEGF to promote vessel leakiness. In this study, we have designed and tested the angiogenic properties of chimeric molecules consisting of receptor-binding parts of VEGF and angiopoietin-1. We aimed at combining the activities of both factors into 1 molecule for easy delivery and expression in target tissues. Methods and Results— The VEGF–angiopoietin-1 (VA1) chimeric protein bound to both VEGF receptor-2 and Tie2 and induced the activation of both receptors. Detailed analysis of VA1 versus VEGF revealed differences in the kinetics of VEGF receptor-2 activation and endocytosis, downstream kinase activation, and VE-cadherin internalization. The delivery of a VA1 transgene into mouse skeletal muscle led to increased blood flow and enhanced angiogenesis. VA1 was also very efficient in rescuing ischemic limb perfusion. However, VA1 induced less plasma protein leakage and myeloid inflammatory cell recruitment than VEGF. Furthermore, angioma-like structures associated with VEGF expression were not observed with VA1. Conclusions— The VEGF–angiopoietin-1 chimera is a potent angiogenic factor that triggers a novel mode of VEGF receptor-2 activation, promoting less vessel leakiness, less tissue inflammation, and better perfusion in ischemic muscle than VEGF. These properties of VA1 make it an attractive therapeutic tool.

Collaboration


Dive into the Denis Tvorogov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kukka Aho

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar

Tuomas Tammela

Helsinki University Central Hospital

View shared research outputs
Top Co-Authors

Avatar

Wei Zheng

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge