Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denis Vile is active.

Publication


Featured researches published by Denis Vile.


Plant Physiology | 2011

Overexpression of Arabidopsis ECERIFERUM1 Promotes Wax Very-Long-Chain Alkane Biosynthesis and Influences Plant Response to Biotic and Abiotic Stresses

Brice Bourdenx; Amélie Bernard; Frédéric Domergue; Stéphanie Pascal; Amandine Léger; Dominique Roby; Marjorie Pervent; Denis Vile; Richard P. Haslam; Johnathan A. Napier; René Lessire; Jérôme Joubès

Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the major components, representing up to 70% of the total wax content in Arabidopsis (Arabidopsis thaliana) leaves. However, despite its major involvement in cuticle formation, the alkane-forming pathway is still largely unknown. To address this deficiency, we report here the characterization of the Arabidopsis ECERIFERUM1 (CER1) gene predicted to encode an enzyme involved in alkane biosynthesis. Analysis of CER1 expression showed that CER1 is specifically expressed in the epidermis of aerial organs and coexpressed with other genes of the alkane-forming pathway. Modification of CER1 expression in transgenic plants specifically affects VLC alkane biosynthesis: waxes of TDNA insertional mutant alleles are devoid of VLC alkanes and derivatives, whereas CER1 overexpression dramatically increases the production of the odd-carbon-numbered alkanes together with a substantial accumulation of iso-branched alkanes. We also showed that CER1 expression is induced by osmotic stresses and regulated by abscisic acid. Furthermore, CER1-overexpressing plants showed reduced cuticle permeability together with reduced soil water deficit susceptibility. However, CER1 overexpression increased susceptibility to bacterial and fungal pathogens. Taken together, these results demonstrate that CER1 controls alkane biosynthesis and is highly linked to responses to biotic and abiotic stresses.


Ecology | 2006

A STRUCTURAL EQUATION MODEL TO INTEGRATE CHANGES IN FUNCTIONAL STRATEGIES DURING OLD‐FIELD SUCCESSION

Denis Vile; Bill Shipley; Eric Garnier

From a functional perspective, changes in abundance, and ultimately species replacement, during succession are a consequence of integrated suites of traits conferring different relative ecological advantages as the environment changes over time. Here we use structural equations to model the interspecific relationships between these integrated functional traits using 34 herbaceous species from a Mediterranean old-field succession and thus quantify the notion of a plant strategy. We measured plant traits related to plant vegetative and reproductive size, leaf functioning, reproductive phenology, seed mass, and production on 15 individuals per species monitored during one growing season. The resulting structural equation model successfully accounts for the pattern of trait covariation during the first 45 years post-abandonment using just two forcing variables: time since site abandonment and seed mass; no association between time since field abandonment and seed mass was observed over these herbaceous stages of secondary succession. All other predicted traits values are determined by these two variables and the cause-effect linkage between them. Adding pre-reproductive vegetative mass as a third forcing variable noticeably increased the predictive power of the model. Increasing the time after abandonment favors species with increasing life span and pre-reproductive biomass and decreasing specific leaf area. Allometric coefficients relating vegetative and reproductive components of plant size were in accordance with allometry theory. The model confirmed the trade-off between seed mass and seed number. Maximum plant height and seed mass were major determinants of reproductive phenology. Our results show that beyond verbal conceptualization, plant ecological strategies can be quantified and modeled.


Plant Physiology | 2010

Probing the Reproducibility of Leaf Growth and Molecular Phenotypes: A Comparison of Three Arabidopsis Accessions Cultivated in Ten Laboratories

Catherine Massonnet; Denis Vile; Juliette Fabre; Matthew A. Hannah; Camila Caldana; Jan Lisec; Gerrit T.S. Beemster; Rhonda C. Meyer; Gaëlle Messerli; Jesper T. Gronlund; Josip Perkovic; Emma Wigmore; Sean T. May; Michael W. Bevan; Christian Meyer; Silvia Rubio-Díaz; Detlef Weigel; José Luis Micol; Vicky Buchanan-Wollaston; Fabio Fiorani; Sean Walsh; Bernd Rinn; Wilhelm Gruissem; Pierre Hilson; Lars Hennig; Lothar Willmitzer; Christine Granier

A major goal of the life sciences is to understand how molecular processes control phenotypes. Because understanding biological systems relies on the work of multiple laboratories, biologists implicitly assume that organisms with the same genotype will display similar phenotypes when grown in comparable conditions. We investigated to what extent this holds true for leaf growth variables and metabolite and transcriptome profiles of three Arabidopsis (Arabidopsis thaliana) genotypes grown in 10 laboratories using a standardized and detailed protocol. A core group of four laboratories generated similar leaf growth phenotypes, demonstrating that standardization is possible. But some laboratories presented significant differences in some leaf growth variables, sometimes changing the genotype ranking. Metabolite profiles derived from the same leaf displayed a strong genotype × environment (laboratory) component. Genotypes could be separated on the basis of their metabolic signature, but only when the analysis was limited to samples derived from one laboratory. Transcriptome data revealed considerable plant-to-plant variation, but the standardization ensured that interlaboratory variation was not considerably larger than intralaboratory variation. The different impacts of the standardization on phenotypes and molecular profiles could result from differences of temporal scale between processes involved at these organizational levels. Our findings underscore the challenge of describing, monitoring, and precisely controlling environmental conditions but also demonstrate that dedicated efforts can result in reproducible data across multiple laboratories. Finally, our comparative analysis revealed that small variations in growing conditions (light quality principally) and handling of plants can account for significant differences in phenotypes and molecular profiles obtained in independent laboratories.


Plant and Cell Physiology | 2010

RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana

Yann Aubert; Denis Vile; Marjorie Pervent; Didier Aldon; Benoit Ranty; Thierry Simonneau; Alain Vavasseur; Jean-Philippe Galaud

Plants overcome water deficit conditions by combining molecular, biochemical and morphological changes. At the molecular level, many stress-responsive genes have been isolated, but knowledge of their physiological functions remains fragmentary. Here, we report data for RD20, a stress-inducible Arabidopsis gene that belongs to the caleosin family. As for other caleosins, we showed that RD20 localized to oil bodies. Although caleosins are thought to play a role in the degradation of lipids during seed germination, induction of RD20 by dehydration, salt stress and ABA suggests that RD20 might be involved in processes other than germination. Using plants carrying the promoter RD20::uidA construct, we show that RD20 is expressed in leaves, guard cells and flowers, but not in root or in mature seeds. Water deficit triggers a transient increase in RD20 expression in leaves that appeared predominantly dependent on ABA signaling. To assess the biological significance of these data, a functional analysis using rd20 knock-out and overexpressing complemented lines cultivated either in standard or in water deficit conditions was performed. The rd20 knock-out plants present a higher transpiration rate that correlates with enhanced stomatal opening and a reduced tolerance to drought as compared with the wild type. These results support a role for RD20 in drought tolerance through stomatal control under water deficit conditions.


Plant Cell and Environment | 2012

Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects?

Denis Vile; Marjorie Pervent; Michaël Belluau; François Vasseur; Justine Bresson; Bertrand Muller; Christine Granier; Thierry Simonneau

High temperature (HT) and water deficit (WD) are frequent environmental constraints restricting plant growth and productivity. These stresses often occur simultaneously in the field, but little is known about their combined impacts on plant growth, development and physiology. We evaluated the responses of 10 Arabidopsis thaliana natural accessions to prolonged elevated air temperature (30 °C) and soil WD applied separately or in combination. Plant growth was significantly reduced under both stresses and their combination was even more detrimental to plant performance. The effects of the two stresses were globally additive, but some traits responded specifically to one but not the other stress. Root allocation increased in response to WD, while reproductive allocation, hyponasty and specific leaf area increased under HT. All the traits that varied in response to combined stresses also responded to at least one of them. Tolerance to WD was higher in small-sized accessions under control temperature and HT and in accessions with high biomass allocation to root under control conditions. Accessions that originate from sites with higher temperature have less stomatal density and allocate less biomass to the roots when cultivated under HT. Independence and interaction between stresses as well as the relationships between traits and stress responses are discussed.


Plant Physiology | 2008

Combined Genetic and Modeling Approaches Reveal That Epidermal Cell Area and Number in Leaves Are Controlled by Leaf and Plant Developmental Processes in Arabidopsis

Sébastien Tisné; Matthieu Reymond; Denis Vile; Juliette Fabre; Myriam Dauzat; Maarten Koornneef; Christine Granier

Both leaf production and leaf expansion are tightly linked to cell expansion and cell division, but the functional relationships between all these variables are not clearly established. To get insight into these relationships, a quantitative genetic analysis was performed in 118 recombinant inbred lines derived from a cross between the Landsberg erecta and Antwerp accessions and was combined with a structural equation modeling approach. Main effects and epistatic interactions at the quantitative trait locus (QTL) level were detected for rosette area, rosette leaf number, leaf 6 area, epidermal cell area and number. A QTL at ERECTA marker (ER) controlled cell expansion and cell division, in interaction with two other QTLs at SNP295 and SNP21 markers. Moreover, both the screening for marker association involved in the variation of the relationships between leaf growth variables and the test of alternative functional models by structural equation modeling revealed that the allelic value at ER controlled epidermal cell area and epidermal cell number in a leaf. These effects are driven both by a whole plant mechanism associated with leaf production and by a single leaf mechanism associated with leaf expansion. The complex effects of the QTL at ER were validated in selected heterogeneous inbred families. The ERECTA gene, which is mutated in the Landsberg erecta parental line, was found to be a putative candidate responsible for these mapped effects by phenotyping mutants of this gene at the cellular level. Together, these results give insight into the complex determination of leaf epidermal cell number and area.


Current Opinion in Plant Biology | 2014

Phenotyping and beyond: modelling the relationships between traits.

Christine Granier; Denis Vile

Plant phenotyping technology has become more advanced with the capacity to measure many morphological and physiological traits on a given individual. With increasing automation, getting access to various traits on a high number of genotypes over time raises the need to develop systems for data storage and analyses, all congregating into plant phenotyping pipelines. In this review, we highlight several studies that illustrate the latest advances in plant multi-trait phenotyping and discuss future needs to ensure the best use of all these quantitative data. We assert that the next challenge is to disentangle how plant traits are embedded in networks of dependencies (and independencies) by modelling the relationships between them and how these are affected by genetics and environment.


Ecology Letters | 2012

A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry

François Vasseur; Cyrille Violle; Brian J. Enquist; Christine Granier; Denis Vile

Many facets of plant form and function are reflected in general cross-taxa scaling relationships. Metabolic scaling theory (MST) and the leaf economics spectrum (LES) have each proposed unifying frameworks and organisational principles to understand the origin of botanical diversity. Here, we test the evolutionary assumptions of MST and the LES using a cross of two genetic variants of Arabidopsis thaliana. We show that there is enough genetic variation to generate a large fraction of variation in the LES and MST scaling functions. The progeny sharing the parental, naturally occurring, allelic combinations at two pleiotropic genes exhibited the theorised optimum ¾ allometric scaling of growth rate and intermediate leaf economics. Our findings: (1) imply that a few pleiotropic genes underlie many plant functional traits and life histories; (2) unify MST and LES within a common genetic framework and (3) suggest that observed intermediate size and longevity in natural populations originate from stabilising selection to optimise physiological trade-offs.


New Phytologist | 2013

The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis

Justine Bresson; Fabrice Varoquaux; Thibaut Bontpart; Bruno Touraine; Denis Vile

Understanding how biotic interactions can improve plant tolerance to drought is a challenging prospect for agronomy and ecology. Plant growth-promoting rhizobacteria (PGPR) are promising candidates but the phenotypic changes induced by PGPR under drought remain to be elucidated. We investigated the effects of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on two accessions of Arabidopsis thaliana with contrasting flowering time. We measured multiple morphophysiological traits related to plant growth and development in order to quantify the added value of the bacteria to drought-response strategies of Arabidopsis in soil conditions. A delay in reproductive development induced by the bacteria resulted in a gain of biomass that was independent of the accession and the watering regime. Coordinated changes in transpiration, ABA content, photosynthesis and development resulted in higher water-use efficiency and a better tolerance to drought of inoculated plants. Our findings give new insights into the ecophysiological bases by which PGPR can confer stress tolerance to plants. Rhizobacteria-induced delay in flowering time could represent a valuable strategy for increasing biomass yield, whereas rhizobacteria-induced improvement of water use is of particular interest in multiple scenarios of water availability.


Plant Cell and Environment | 2011

Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature

François Vasseur; Florent Pantin; Denis Vile

High temperature (HT) is a major limiting factor for plant productivity. Because some responses to HT, notably hyponasty, resemble those encountered in low light (LL), we hypothesized that plant responses to HT are under the control of carbon balance. We analysed the interactive effects of HT and irradiance level on hyponasty and a set of traits related to plant growth in natural accessions of Arabidopsis thaliana and mutants affected in heat dissipation through transpiration (NCED6-OE, ost2) and starch metabolism (pgm). HT induced hyponasty, reduced plant growth and modified leaf structure. LL worsened the effects of HT, while increasing light restored trait values close to levels observed at control temperature. Leaf temperature per se did not play a major role in the observed responses. By contrast, a major role of carbon balance was supported by hyponastic growth of pgm, as well as morphological, physiological (photosynthesis, sugar and starch contents) and transcriptional data. Carbon balance could be a common sensor of HT and LL, leading to responses specific of the shade avoidance syndrome. Hyponasty and associated changes in plant traits could be key traits conditioning plant performance under competition for light, particularly in warm environments.

Collaboration


Dive into the Denis Vile's collaboration.

Top Co-Authors

Avatar

Christine Granier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eric Garnier

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Myriam Dauzat

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyrille Violle

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Bill Shipley

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Alexis Bédiée

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Catherine Massonnet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Justine Bresson

University of Montpellier

View shared research outputs
Researchain Logo
Decentralizing Knowledge