Denisa Komůrková
Academy of Sciences of the Czech Republic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denisa Komůrková.
Journal of Medicinal Chemistry | 2016
Michal Hofer; Martin Falk; Denisa Komůrková; Iva Falková; Alena Bačíková; Bořivoj Klejdus; Eva Pagáčová; Lenka Štefančíková; Lenka Weiterová; Karel J. Angelis; Stanislav Kozubek; Ladislav Dušek; Štefan Galbavý
Amifostine protects normal cells from DNA damage induction by ionizing radiation or chemotherapeutics, whereas cancer cells typically remain uninfluenced. While confirming this phenomenon, we have revealed by comet assay and currently the most sensitive method of DNA double strand break (DSB) quantification (based on γH2AX/53BP1 high-resolution immunofluorescence microscopy) that amifostine treatment supports DSB repair in γ-irradiated normal NHDF fibroblasts but alters it in MCF7 carcinoma cells. These effects follow from the significantly lower activity of alkaline phosphatase measured in MCF7 cells and their supernatants as compared with NHDF fibroblasts. Liquid chromatography-mass spectrometry confirmed that the amifostine conversion to WR-1065 was significantly more intensive in normal NHDF cells than in tumor MCF cells. In conclusion, due to common differences between normal and cancer cells in their abilities to convert amifostine to its active metabolite WR-1065, amifostine may not only protect in multiple ways normal cells from radiation-induced DNA damage but also make cancer cells suffer from DSB repair alteration.
Molecules | 2012
Michal Hofer; Milan Pospíšil; Zuzana Hoferová; Lenka Weiterová; Denisa Komůrková
The presented review summarizes experimental data obtained with a mouse model when investigating the relationship between inhibition of prostaglandin production and hematopoiesis. While prostaglandin E2 acts in a negative feedback control of myelopoiesis, inhibition of cyclooxygenases, responsible for its production, shifts the feedback to positive control. Based on these relationships, agents inhibiting cyclo-oxygenases, known as non-steroidal anti-inflammatory drugs (NSAIDs), can activate hematopoiesis and be protective or curative under myelosuppressive states. The effectiveness of therapeutic use of NSAIDs in these situations is expressive especially under the selective inhibition of cyclooxygenase-2 (COX-2), when undesirable side effects of cyclooxygenase-1 inhibition, like gastrointestinal damage, are absent. The effects of the clinically approved selective COX-2 inhibitor, meloxicam, were investigated and demonstrated significant hematopoiesis-stimulating and survival-enhancing actions of this drug in sublethally or lethally γ-irradiated mice. These effects were connected with the ability of meloxicam to increase serum levels of the granulocyte colony-stimulating factor. It can be inferred from these findings that selective COX-2 inhibitors might find their use in the treatment of myelosuppressions of various etiologies.
Purinergic Signalling | 2013
Michal Hofer; Milan Pospíšil; Zuzana Hoferová; Denisa Komůrková; Petr Paral; Filipp Savvulidi; Luděk Šefc
This study continues our earlier findings on the hematopoiesis-modulating effects of adenosine A1 and A3 receptor agonists that were performed on committed hematopoietic progenitor and precursor cell populations. In the earlier experiments, N6-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, was found to inhibit proliferation in the above-mentioned hematopoietic cell systems, whereas N6-(3-iodobenzyl)adenosine-5′-N-methyluronamide (IB-MECA), an adenosine A3 receptor agonist, was found to stimulate it. The topic of this study was to evaluate the possibility that the above-mentioned adenosine receptor agonists modulate the behavior of early hematopoietic progenitor cells and hematopoietic stem cells. Flow cytometric analysis of hematopoietic stem cells in mice was employed, as well as a functional test of hematopoietic stem and progenitor cells (HSPCs). These techniques enabled us to study the effect of the agonists on both short-term repopulating ability and long-term repopulating ability, representing multipotent progenitors and hematopoietic stem cells, respectively. In a series of studies, we did not find any significant effect of adenosine agonists on HSPCs in terms of their numbers, proliferation, or functional activity. Thus, it can be concluded that CPA and IB-MECA do not significantly influence the primitive hematopoietic stem and progenitor cell pool and that the hematopoiesis-modulating action of these adenosine receptor agonists is restricted to more mature compartments of hematopoietic progenitor and precursor cells.
Central European Journal of Biology | 2014
Michal Hofer; Milan Pospíšil; Ladislav Dušek; Zuzana Hoferová; Denisa Komůrková
Combined approaches to the treatment of acute radiation disease are preferred to single-agent therapies due to proven or anticipated better outcomes comprising increased therapeutic efficacy and decreased incidence of undesirable side effects. Our studies on post-exposure treatment of mice irradiated by sublethal or lethal doses of ionizing radiation included testing the effectiveness of meloxicam, a cyclooxygenase-2 inhibitor, and IB-MECA, an adenosine A3 receptor agonist. The efficacy of meloxicam and IB-MECA to positively influence the progress of the acute radiation disease has been tested in situations of their combined administration with granulocyte colony-stimulating factor (G-CSF) or with each other. The results of our studies revealed a significantly improved regeneration of hematopoietic cell populations ranging from the bone marrow progenitor cells to mature blood cells following combined treatments. Also, survival of mice exposed to lethal radiation doses was highest in the animals treated with a combination of the two drugs. It can be inferred from the results that if the drug combinations employed were used in humans, e.g. in the treatment of victims of radiation accidents, a better therapeutic outcome could be expected. Therefore, further studies directed at clinical applications of meloxicam and IB-MECA in radiation victims is recommended.
Journal of Cellular Physiology | 2018
Josef Večeřa; Eva Bártová; Jana Krejčí; Soňa Legartová; Denisa Komůrková; Jana Ruda-Kucerova; Tibor Štark; Eva Dražanová; Tomáš Kašpárek; Alexandra Šulcová; Frank J. Dekker; Wiktor Szymanski; Christian Seiser; Georg Weitzer; Raphael Mechoulam; Vincenzo Micale; Stanislav Kozubek
Although histone acetylation is one of the most widely studied epigenetic modifications, there is still a lack of information regarding how the acetylome is regulated during brain development and pathophysiological processes. We demonstrate that the embryonic brain (E15) is characterized by an increase in H3K9 acetylation as well as decreases in the levels of HDAC1 and HDAC3. Moreover, experimental induction of H3K9 hyperacetylation led to the overexpression of NCAM in the embryonic cortex and depletion of Sox2 in the subventricular ependyma, which mimicked the differentiation processes. Inducing differentiation in HDAC1‐deficient mouse ESCs resulted in early H3K9 deacetylation, Sox2 downregulation, and enhanced astrogliogenesis, whereas neuro‐differentiation was almost suppressed. Neuro‐differentiation of (wt) ESCs was characterized by H3K9 hyperacetylation that was associated with HDAC1 and HDAC3 depletion. Conversely, the hippocampi of schizophrenia‐like animals showed H3K9 deacetylation that was regulated by an increase in both HDAC1 and HDAC3. The hippocampi of schizophrenia‐like brains that were treated with the cannabinoid receptor‐1 inverse antagonist AM251 expressed H3K9ac at the level observed in normal brains. Together, the results indicate that co‐regulation of H3K9ac by HDAC1 and HDAC3 is important to both embryonic brain development and neuro‐differentiation as well as the pathophysiology of a schizophrenia‐like phenotype.
Purinergic Signalling | 2014
Michal Hofer; Milan Pospíšil; Ladislav Dušek; Zuzana Hoferová; Denisa Komůrková
The role of the adenosine A3 receptor in hematopoiesis was studied using adenosine A3 receptor knockout (A3AR KO) mice. Hematological parameters of peripheral blood and femoral bone marrow of irradiated and untreated A3AR KO mice and their wild-type (WT) counterparts were investigated. Irradiation of the mice served as a defined hematopoiesis-damaging means enabling us to evaluate contingent differences in the pattern of experimentally induced hematopoietic suppression between the A3AR KO mice and WT mice. Defects were observed in the counts and/or functional parameters of blood cells in the A3AR KO mice. These defects include statistically significantly lower values of blood neutrophil and monocyte counts, as well as those of mean erythrocyte volume, mean erythrocyte hemoglobin, blood platelet counts, mean platelet volume, and plateletcrit, and can be considered to bear evidence of the lack of a positive role played by the adenosine A3 receptor in the hematopoietic system. Statistically significantly increased values of the bone marrow parameters studied in A3AR KO mice (femoral bone marrow cellularity, granulocyte/macrophage progenitor cells, and erythrocyte progenitor cells) can probably be explained by compensatory mechanisms attempting to offset the disorders in the function of blood elements in these mice. The pattern of the radiation-induced hematopoietic suppression was very similar in A3AR KO mice and their WT counterparts.
Purinergic Signalling | 2014
Michal Hofer; Milan Pospíšil; Ladislav Dušek; Zuzana Hoferová; Denisa Komůrková
The role of the adenosine A3 receptor in hematopoiesis was studied using adenosine A3 receptor knockout (A3AR KO) mice. Hematological parameters of peripheral blood and femoral bone marrow of irradiated and untreated A3AR KO mice and their wild-type (WT) counterparts were investigated. Irradiation of the mice served as a defined hematopoiesis-damaging means enabling us to evaluate contingent differences in the pattern of experimentally induced hematopoietic suppression between the A3AR KO mice and WT mice. Defects were observed in the counts and/or functional parameters of blood cells in the A3AR KO mice. These defects include statistically significantly lower values of blood neutrophil and monocyte counts, as well as those of mean erythrocyte volume, mean erythrocyte hemoglobin, blood platelet counts, mean platelet volume, and plateletcrit, and can be considered to bear evidence of the lack of a positive role played by the adenosine A3 receptor in the hematopoietic system. Statistically significantly increased values of the bone marrow parameters studied in A3AR KO mice (femoral bone marrow cellularity, granulocyte/macrophage progenitor cells, and erythrocyte progenitor cells) can probably be explained by compensatory mechanisms attempting to offset the disorders in the function of blood elements in these mice. The pattern of the radiation-induced hematopoietic suppression was very similar in A3AR KO mice and their WT counterparts.
Molecules | 2014
Michal Hofer; Milan Pospíšil; Denisa Komůrková; Zuzana Hoferová
This article concisely summarizes data on the action of one of the principal and best known growth factors, the granulocyte colony-stimulating factor (G-CSF), in a mammalian organism exposed to radiation doses inducing acute radiation syndrome. Highlighted are the topics of its real or anticipated use in radiation accident victims, the timing of its administration, the possibilities of combining G-CSF with other drugs, the ability of other agents to stimulate endogenous G-CSF production, as well as of the capability of this growth factor to ameliorate not only the bone marrow radiation syndrome but also the gastrointestinal radiation syndrome. G-CSF is one of the pivotal drugs in the treatment of radiation accident victims and its employment in this indication can be expected to remain or even grow in the future.
Purinergic Signalling | 2015
Michal Hofer; Milan Pospíšil; Ladislav Dušek; Zuzana Hoferová; Denisa Komůrková
Adenosine A3 receptor knockout (A3AR KO) mice and their wild-type (WT) counterparts were compared from the point of view of their abilities to survive exposures to lethal doses of γ-radiation belonging to the range of radiation doses inducing the bone marrow acute radiation syndrome. Parameters of cumulative 30-day survival (experiment using a midlethal radiation dose) or cumulative 11-day survival (experiment using an absolutely lethal radiation dose), and of mean survival time were evaluated. The values of A3AR KO mice always reflected their higher survival in comparison with WT ones, the P values being above the limit for statistical significance after the midlethal radiation dose and standing for statistical significance after the absolutely lethal radiation dose. This finding was considered surprising, taking into account the previously obtained findings on defects in numbers and functional properties of peripheral blood cells in A3AR KO mice. Therefore, previous hematological analyses of A3AR KO mice were supplemented in the present studies with determination of serum levels of the granulocyte colony-stimulating factor, erythropoietin, and thrombopoietin. Though distinct differences in these parameters were observed between A3AR KO and WT mice, none of them could explain the relatively high postirradiation survival of A3AR KO mice. Further studies on these mice comprising also those on other than hemopoietic tissues and organs can help to clarify their relative radioresistance.
Radiation and Environmental Biophysics | 2014
Michal Hofer; Milan Pospíšil; Ladislav Dušek; Zuzana Hoferová; Denisa Komůrková