Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denise E. Costich is active.

Publication


Featured researches published by Denise E. Costich.


PLOS Genetics | 2013

Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol.

Fei Lu; Alexander E. Lipka; Jeff Glaubitz; Rob J. Elshire; Jerome H. Cherney; Michael D. Casler; Edward S. Buckler; Denise E. Costich

Switchgrass (Panicum virgatum L.) is a perennial grass that has been designated as an herbaceous model biofuel crop for the United States of America. To facilitate accelerated breeding programs of switchgrass, we developed both an association panel and linkage populations for genome-wide association study (GWAS) and genomic selection (GS). All of the 840 individuals were then genotyped using genotyping by sequencing (GBS), generating 350 GB of sequence in total. As a highly heterozygous polyploid (tetraploid and octoploid) species lacking a reference genome, switchgrass is highly intractable with earlier methodologies of single nucleotide polymorphism (SNP) discovery. To access the genetic diversity of species like switchgrass, we developed a SNP discovery pipeline based on a network approach called the Universal Network-Enabled Analysis Kit (UNEAK). Complexities that hinder single nucleotide polymorphism discovery, such as repeats, paralogs, and sequencing errors, are easily resolved with UNEAK. Here, 1.2 million putative SNPs were discovered in a diverse collection of primarily upland, northern-adapted switchgrass populations. Further analysis of this data set revealed the fundamentally diploid nature of tetraploid switchgrass. Taking advantage of the high conservation of genome structure between switchgrass and foxtail millet (Setaria italica (L.) P. Beauv.), two parent-specific, synteny-based, ultra high-density linkage maps containing a total of 88,217 SNPs were constructed. Also, our results showed clear patterns of isolation-by-distance and isolation-by-ploidy in natural populations of switchgrass. Phylogenetic analysis supported a general south-to-north migration path of switchgrass. In addition, this analysis suggested that upland tetraploid arose from upland octoploid. All together, this study provides unparalleled insights into the diversity, genomic complexity, population structure, phylogeny, phylogeography, ploidy, and evolutionary dynamics of switchgrass.


Nature Genetics | 2012

Maize HapMap2 identifies extant variation from a genome in flux

Jer-Ming Chia; Chi Song; Peter J. Bradbury; Denise E. Costich; Natalia de Leon; John Doebley; Robert J. Elshire; Brandon S. Gaut; Laura Geller; Jeffrey C. Glaubitz; Michael A. Gore; Kate Guill; James B. Holland; Matthew B. Hufford; Jinsheng Lai; Meng Li; Xin Liu; Yanli Lu; Richard McCombie; Rebecca J. Nelson; Jesse Poland; Boddupalli M. Prasanna; Tanja Pyhäjärvi; Tingzhao Rong; Rajandeep S. Sekhon; Qi Sun; Maud I. Tenaillon; Feng Tian; Jun Wang; Xun Xu

Whereas breeders have exploited diversity in maize for yield improvements, there has been limited progress in using beneficial alleles in undomesticated varieties. Characterizing standing variation in this complex genome has been challenging, with only a small fraction of it described to date. Using a population genetics scoring model, we identified 55 million SNPs in 103 lines across pre-domestication and domesticated Zea mays varieties, including a representative from the sister genus Tripsacum. We find that structural variations are pervasive in the Z. mays genome and are enriched at loci associated with important traits. By investigating the drivers of genome size variation, we find that the larger Tripsacum genome can be explained by transposable element abundance rather than an allopolyploid origin. In contrast, intraspecies genome size variation seems to be controlled by chromosomal knob content. There is tremendous overlap in key gene content in maize and Tripsacum, suggesting that adaptations from Tripsacum (for example, perennialism and frost and drought tolerance) can likely be integrated into maize.


PLOS ONE | 2014

Accelerating the switchgrass (Panicum virgatum L.) breeding cycle using genomic selection approaches.

Alexander E. Lipka; Fei Lu; Jerome H. Cherney; Edward S. Buckler; Michael D. Casler; Denise E. Costich

Switchgrass (Panicum virgatum L.) is a perennial grass undergoing development as a biofuel feedstock. One of the most important factors hindering breeding efforts in this species is the need for accurate measurement of biomass yield on a per-hectare basis. Genomic selection on simple-to-measure traits that approximate biomass yield has the potential to significantly speed up the breeding cycle. Recent advances in switchgrass genomic and phenotypic resources are now making it possible to evaluate the potential of genomic selection of such traits. We leveraged these resources to study the ability of three widely-used genomic selection models to predict phenotypic values of morphological and biomass quality traits in an association panel consisting of predominantly northern adapted upland germplasm. High prediction accuracies were obtained for most of the traits, with standability having the highest ten-fold cross validation prediction accuracy (0.52). Moreover, the morphological traits generally had higher prediction accuracies than the biomass quality traits. Nevertheless, our results suggest that the quality of current genomic and phenotypic resources available for switchgrass is sufficiently high for genomic selection to significantly impact breeding efforts for biomass yield.


Theoretical and Applied Genetics | 2016

Molecular characterization of CIMMYT maize inbred lines with genotyping-by-sequencing SNPs

Yongsheng Wu; Felix San Vicente; Kaijian Huang; Thanda Dhliwayo; Denise E. Costich; Kassa Semagn; Nair Sudha; Michael Olsen; Boddupalli M. Prasanna; Xuecai Zhang; Raman Babu

Key messageMolecular characterization information on genetic diversity, population structure and genetic relationships provided by this research will help maize breeders to better understand how to utilize the current CML collection.AbstractCIMMYT maize inbred lines (CMLs) have been widely used all over the world and have contributed greatly to both tropical and temperate maize improvement. Genetic diversity and population structure of the current CML collection and of six temperate inbred lines were assessed and relationships among all lines were determined with genotyping-by-sequencing SNPs. Results indicated that: (1) wider genetic distance and low kinship coefficients among most pairs of lines reflected the uniqueness of most lines in the current CML collection; (2) the population structure and genetic divergence between the Temperate subgroup and Tropical subgroups were clear; three major environmental adaptation groups (Lowland Tropical, Subtropical/Mid-altitude and Highland Tropical subgroups) were clearly present in the current CML collection; (3) the genetic diversity of the three Tropical subgroups was similar and greater than that of the Temperate subgroup; the average genetic distance between the Temperate and Tropical subgroups was greater than among Tropical subgroups; and (4) heterotic patterns in each environmental adaptation group estimated using GBS SNPs were only partially consistent with patterns estimated based on combining ability tests and pedigree information. Combining current heterotic information based on combining ability tests and the genetic relationships inferred from molecular marker analyses may be the best strategy to define heterotic groups for future tropical maize improvement. Information resulting from this research will help breeders to better understand how to utilize all the CMLs to select parental lines, replace testers, assign heterotic groups and create a core set of breeding germplasm.


PLOS ONE | 2012

SNP Discovery with EST and NextGen Sequencing in Switchgrass (Panicum virgatum L.)

Elhan S. Ersoz; Mark H. Wright; Jasmyn Pangilinan; Moira J. Sheehan; Christian M. Tobias; Michael D. Casler; Edward S. Buckler; Denise E. Costich

Although yield trials for switchgrass (Panicum virgatum L.), a potentially high value biofuel feedstock crop, are currently underway throughout North America, the genetic tools for crop improvement in this species are still in the early stages of development. Identification of high-density molecular markers, such as single nucleotide polymorphisms (SNPs), that are amenable to high-throughput genotyping approaches, is the first step in a quantitative genetics study of this model biofuel crop species. We generated and sequenced expressed sequence tag (EST) libraries from thirteen diverse switchgrass cultivars representing both upland and lowland ecotypes, as well as tetraploid and octoploid genomes. We followed this with reduced genomic library preparation and massively parallel sequencing of the same samples using the Illumina Genome Analyzer technology platform. EST libraries were used to generate unigene clusters and establish a gene-space reference sequence, thus providing a framework for assembly of the short sequence reads. SNPs were identified utilizing these scaffolds. We used a custom software program for alignment and SNP detection and identified over 149,000 SNPs across the 13 short-read sequencing libraries (SRSLs). Approximately 25,000 additional SNPs were identified from the entire EST collection available for the species. This sequencing effort generated data that are suitable for marker development and for estimation of population genetic parameters, such as nucleotide diversity and linkage disequilibrium. Based on these data, we assessed the feasibility of genome wide association mapping and genomic selection applications in switchgrass. Overall, the SNP markers discovered in this study will help facilitate quantitative genetics experiments and greatly enhance breeding efforts that target improvement of key biofuel traits and development of new switchgrass cultivars.


PLOS ONE | 2016

The Development of Quality Control Genotyping Approaches: A Case Study Using Elite Maize Lines.

Jiafa Chen; Cristian Zavala; Noemi Ortega; Cesar Petroli; Jorge Franco; Juan Burgueño; Denise E. Costich; Sarah Hearne

Quality control (QC) of germplasm identity and purity is a critical component of breeding and conservation activities. SNP genotyping technologies and increased availability of markers provide the opportunity to employ genotyping as a low-cost and robust component of this QC. In the public sector available low-cost SNP QC genotyping methods have been developed from a very limited panel of markers of 1,000 to 1,500 markers without broad selection of the most informative SNPs. Selection of optimal SNPs and definition of appropriate germplasm sampling in addition to platform section impact on logistical and resource-use considerations for breeding and conservation applications when mainstreaming QC. In order to address these issues, we evaluated the selection and use of SNPs for QC applications from large DArTSeq data sets generated from CIMMYT maize inbred lines (CMLs). Two QC genotyping strategies were developed, the first is a “rapid QC”, employing a small number of SNPs to identify potential mislabeling of seed packages or plots, the second is a “broad QC”, employing a larger number of SNP, used to identify each germplasm entry and to measure heterogeneity. The optimal marker selection strategies combined the selection of markers with high minor allele frequency, sampling of clustered SNP in proportion to marker cluster distance and selecting markers that maintain a uniform genomic distribution. The rapid and broad QC SNP panels selected using this approach were further validated using blind test assessments of related re-generation samples. The influence of sampling within each line was evaluated. Sampling 192 individuals would result in close to 100% possibility of detecting a 5% contamination in the entry, and approximately a 98% probability to detect a 2% contamination of the line. These results provide a framework for the establishment of QC genotyping. A comparison of financial and time costs for use of these approaches across different platforms is discussed providing a framework for institutions involved in maize conservation and breeding to assess the resource use effectiveness of QC genotyping. Application of these research findings, in combination with existing QC approaches, will ensure the regeneration, distribution and use in breeding of true to type inbred germplasm. These findings also provide an effective approach to optimize SNP selection for QC genotyping in other species.


G3: Genes, Genomes, Genetics | 2015

Genome-Wide Association Study Based on Multiple Imputation with Low-Depth Sequencing Data: Application to Biofuel Traits in Reed Canarygrass

Guillaume P. Ramstein; Alexander E. Lipka; Fei Lu; Denise E. Costich; Jerome H. Cherney; Edward S. Buckler; Michael D. Casler

Genotyping by sequencing allows for large-scale genetic analyses in plant species with no reference genome, but sets the challenge of sound inference in presence of uncertain genotypes. We report an imputation-based genome-wide association study (GWAS) in reed canarygrass (Phalaris arundinacea L., Phalaris caesia Nees), a cool-season grass species with potential as a biofuel crop. Our study involved two linkage populations and an association panel of 590 reed canarygrass genotypes. Plants were assayed for up to 5228 single nucleotide polymorphism markers and 35 traits. The genotypic markers were derived from low-depth sequencing with 78% missing data on average. To soundly infer marker-trait associations, multiple imputation (MI) was used: several imputes of the marker data were generated to reflect imputation uncertainty and association tests were performed on marker effects across imputes. A total of nine significant markers were identified, three of which showed significant homology with the Brachypodium dystachion genome. Because no physical map of the reed canarygrass genome was available, imputation was conducted using classification trees. In general, MI showed good consistency with the complete-case analysis and adequate control over imputation uncertainty. A gain in significance of marker effects was achieved through MI, but only for rare cases when missing data were <45%. In addition to providing insight into the genetic basis of important traits in reed canarygrass, this study presents one of the first applications of MI to genome-wide analyses and provides useful guidelines for conducting GWAS based on genotyping-by-sequencing data.


Genetics Research | 2008

'Junk' DNA and phenotypic evolution in Silene section Siphonomorpha.

Thomas R. Meagher; Denise E. Costich

One of the long-standing mysteries in genomic evolution is the observation that much of the genome is composed of repetitive DNA, resulting in inter- and intraspecific variation in nuclear DNA content. Our discovery of a negative correlation between nuclear DNA content and flower size in Silene latifolia has been supported by our subsequent investigation of changes in DNA content as a correlated response to selection on flower size. Moreover, we have observed a similar trend across a range of related dioecious species in Silene sect. Elisanthe. Given the presence of sex chromosomes in dioecious Silene species, and the tendency of sex chromosomes to accumulate repetitive DNA, it seems plausible that dioecious species undergo genomic evolution in ways that differ from what one might expect in hermaphroditic species. Specifically, we query whether the observed relationship between nuclear DNA content and flower size observed in dioecious Silene is a peculiarity of sex chromosome evolution. In the present study we investigated nuclear DNA content and flower size variation in hermaphroditic species of Silene sect. Siphonomorpha, as close relatives of the dioecious species studied previously. Although the nuclear DNA contents of these species were lower than those for species in sect. Elisanthe, there was still significant intra- as well as interspecific variation in nuclear DNA content. Flower size variation was found among species of sect. Siphonomorpha for petal claw and petal limb lengths, but not for calyx diameter. This last trait varies extensively in sect. Elisanthe, in part due to sex-specific selection. A negative correlation with nuclear DNA content was found across populations for petal limb length, but not for other floral dimensions. We conclude that impacts of nuclear DNA content on phenotypic evolution do manifest themselves in hermaphroditic species, so that the effects observed in sect. Elisanthe, and particularly in S. latifolia, while perhaps amplified by the genomic impacts of sex chromosomes, are not limited to dioecious taxa.


The Plant Cell | 2009

Association Mapping: Critical Considerations Shift from Genotyping to Experimental Design

Sean Myles; Jason A. Peiffer; Patrick J. Brown; Elhan S. Ersoz; Zhiwu Zhang; Denise E. Costich; Edward S. Buckler


Field Crops Research | 2010

Cross-amplification of EST-derived markers among 16 grass species

M. Zeid; Ju-Kyung Yu; I. Goldowitz; M.E. Denton; Denise E. Costich; C.T. Jayasuriya; M. Saha; Robert J. Elshire; David Benscher; F. Breseghello; Jesse D. Munkvold; Rajeev K. Varshney; G. Belay; Mark E. Sorrells

Collaboration


Dive into the Denise E. Costich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael D. Casler

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boddupalli M. Prasanna

International Maize and Wheat Improvement Center

View shared research outputs
Top Co-Authors

Avatar

Bernd Friebe

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul L. Sanchez

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge