Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denise E. Dunn is active.

Publication


Featured researches published by Denise E. Dunn.


Journal of the American Chemical Society | 2014

Ferrostatins Inhibit Oxidative Lipid Damage and Cell Death in Diverse Disease Models

Rachid Skouta; Scott J. Dixon; Jianlin Wang; Denise E. Dunn; Marina Orman; Kenichi Shimada; Paul A. Rosenberg; Donald C. Lo; Joel M. Weinberg; Andreas Linkermann; Brent R. Stockwell

Ferrostatin-1 (Fer-1) inhibits ferroptosis, a form of regulated, oxidative, nonapoptotic cell death. We found that Fer-1 inhibited cell death in cellular models of Huntington’s disease (HD), periventricular leukomalacia (PVL), and kidney dysfunction; Fer-1 inhibited lipid peroxidation, but not mitochondrial reactive oxygen species formation or lysosomal membrane permeability. We developed a mechanistic model to explain the activity of Fer-1, which guided the development of ferrostatins with improved properties. These studies suggest numerous therapeutic uses for ferrostatins, and that lipid peroxidation mediates diverse disease phenotypes.


The Journal of Neuroscience | 2008

Intrabodies Binding the Proline-Rich Domains of Mutant Huntingtin Increase Its Turnover and Reduce Neurotoxicity

Amber L. Southwell; Ali Khoshnan; Denise E. Dunn; Charles W. Bugg; Donald C. Lo; Paul H. Patterson

Although expanded polyglutamine (polyQ) repeats are inherently toxic, causing at least nine neurodegenerative diseases, the protein context determines which neurons are affected. The polyQ expansion that causes Huntingtons disease (HD) is in the first exon (HDx-1) of huntingtin (Htt). However, other parts of the protein, including the 17 N-terminal amino acids and two proline (polyP) repeat domains, regulate the toxicity of mutant Htt. The role of the P-rich domain that is flanked by the polyP domains has not been explored. Using highly specific intracellular antibodies (intrabodies), we tested various epitopes for their roles in HDx-1 toxicity, aggregation, localization, and turnover. Three domains in the P-rich region (PRR) of HDx-1 are defined by intrabodies: MW7 binds the two polyP domains, and Happ1 and Happ3, two new intrabodies, bind the unique, P-rich epitope located between the two polyP epitopes. We find that the PRR-binding intrabodies, as well as VL12.3, which binds the N-terminal 17 aa, decrease the toxicity and aggregation of HDx-1, but they do so by different mechanisms. The PRR-binding intrabodies have no effect on Htt localization, but they cause a significant increase in the turnover rate of mutant Htt, which VL12.3 does not change. In contrast, expression of VL12.3 increases nuclear Htt. We propose that the PRR of mutant Htt regulates its stability, and that compromising this pathogenic epitope by intrabody binding represents a novel therapeutic strategy for treating HD. We also note that intrabody binding represents a powerful tool for determining the function of protein epitopes in living cells.


Journal of Neurochemistry | 2011

In vitro and in vivo neuroprotective activity of the cardiac glycoside oleandrin from Nerium oleander in brain slice-based stroke models

Denise E. Dunn; Dong Ning He; Peiying Yang; Mary J. Johansen; Robert A. Newman; Donald C. Lo

J. Neurochem. (2011) 119, 805–814.


Human Molecular Genetics | 2010

CalDAG-GEFI down-regulation in the striatum as a neuroprotective change in Huntington's disease

Jill R. Crittenden; Denise E. Dunn; Farhan I. Merali; Ben Woodman; Michael Yim; Anna E. Borkowska; Matthew P. Frosch; Gillian P. Bates; David E. Housman; Donald C. Lo; Ann M. Graybiel

Huntingtin protein (Htt) is ubiquitously expressed, yet Huntingtons disease (HD), a fatal neurologic disorder produced by expansion of an Htt polyglutamine tract, is characterized by neurodegeneration that occurs primarily in the striatum and cerebral cortex. Such discrepancies between sites of expression and pathology occur in multiple neurodegenerative disorders associated with expanded polyglutamine tracts. One possible reason is that disease-modifying factors are tissue-specific. Here, we show that the striatum-enriched protein, CalDAG-GEFI, is severely down-regulated in the striatum of mouse HD models and is down-regulated in HD individuals. In the R6/2 transgenic mouse model of HD, striatal neurons with the largest aggregates of mutant Htt have the lowest levels of CalDAG-GEFI. In a brain-slice explant model of HD, knock-down of CalDAG-GEFI expression rescues striatal neurons from pathology induced by transfection of polyglutamine-expanded Htt exon 1. These findings suggest that the striking down-regulation of CalDAG-GEFI in HD could be a protective mechanism that mitigates Htt-induced degeneration.


PLOS ONE | 2011

Perturbation with Intrabodies Reveals That Calpain Cleavage Is Required for Degradation of Huntingtin Exon 1

Amber L. Southwell; Charles W. Bugg; Linda S. Kaltenbach; Denise E. Dunn; Stefanie L. Butland; Andreas Weiss; Paolo Paganetti; Donald C. Lo; Paul H. Patterson

Background Proteolytic processing of mutant huntingtin (mHtt), the protein that causes Huntingtons disease (HD), is critical for mHtt toxicity and disease progression. mHtt contains several caspase and calpain cleavage sites that generate N-terminal fragments that are more toxic than full-length mHtt. Further processing is then required for the degradation of these fragments, which in turn, reduces toxicity. This unknown, secondary degradative process represents a promising therapeutic target for HD. Methodology/Principal Findings We have used intrabodies, intracellularly expressed antibody fragments, to gain insight into the mechanism of mutant huntingtin exon 1 (mHDx-1) clearance. Happ1, an intrabody recognizing the proline-rich region of mHDx-1, reduces the level of soluble mHDx-1 by increasing clearance. While proteasome and macroautophagy inhibitors reduce turnover of mHDx-1, Happ1 is still able to reduce mHDx-1 under these conditions, indicating Happ1-accelerated mHDx-1 clearance does not rely on these processes. In contrast, a calpain inhibitor or an inhibitor of lysosomal pH block Happ1-mediated acceleration of mHDx-1 clearance. These results suggest that mHDx-1 is cleaved by calpain, likely followed by lysosomal degradation and this process regulates the turnover rate of mHDx-1. Sequence analysis identifies amino acid (AA) 15 as a potential calpain cleavage site. Calpain cleavage of recombinant mHDx-1 in vitro yields fragments of sizes corresponding to this prediction. Moreover, when the site is blocked by binding of another intrabody, VL12.3, turnover of soluble mHDx-1 in living cells is blocked. Conclusions/Significance These results indicate that calpain-mediated removal of the 15 N-terminal AAs is required for the degradation of mHDx-1, a finding that may have therapeutic implications.


The Journal of Neuroscience | 2014

BDNF Mediates Neuroprotection against Oxygen-Glucose Deprivation by the Cardiac Glycoside Oleandrin

Michael J. Van Kanegan; Dong Ning He; Denise E. Dunn; Peiying Yang; Robert A. Newman; Anne E. West; Donald C. Lo

We have previously shown that the botanical drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, provides neuroprotection in both in vitro and in vivo brain slice-based models for focal ischemia (Dunn et al., 2011). Intriguingly, plasma levels of the neurotrophin BDNF were increased in patients treated with PBI-05204 in a phase I clinical trial (Bidyasar et al., 2009). We thus tested the hypothesis that neuroprotection provided by PBI-05204 to rat brain slices damaged by oxygen-glucose deprivation (OGD) is mediated by BDNF. We found, in fact, that exogenous BDNF protein itself is sufficient to protect brain slices against OGD, whereas downstream activation of TrkB receptors for BDNF is necessary for neuroprotection provided by PBI-05204, using three independent methods. Finally, we provide evidence that oleandrin, the principal cardiac glycoside component of PBI-05204, can quantitatively account for regulation of BDNF at both the protein and transcriptional levels. Together, these findings support further investigation of cardiac glycosides in providing neuroprotection in the context of ischemic stroke.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Small molecule-induced oxidation of protein disulfide isomerase is neuroprotective

Anna Kaplan; Michael M. Gaschler; Denise E. Dunn; Ryan M. Colligan; Lewis M. Brown; Arthur G. Palmer; Donald C. Lo; Brent R. Stockwell

Significance Protein disulfide isomerase (PDI) is a chaperone protein in the endoplasmic reticulum. It is up-regulated in mouse models of, and brains of patients with, neurological protein folding diseases. Irreversible inhibition of PDI activity by the small molecule 16F16 results in protection in cell and organotypic brain slice culture models of Huntington disease. Here, we identified lead optimized compound (LOC)14 as a nanomolar, reversible inhibitor of PDI that protects PC12 cells and medium spiny neurons from the toxic mutant huntingtin protein. LOC14 has improved potency compared with 16F16 and displays favorable pharmaceutical properties, making it a suitable compound to evaluate the therapeutic potential of inhibiting PDI in multiple disease models. Protein disulfide isomerase (PDI) is a chaperone protein in the endoplasmic reticulum that is up-regulated in mouse models of, and brains of patients with, neurodegenerative diseases involving protein misfolding. PDI’s role in these diseases, however, is not fully understood. Here, we report the discovery of a reversible, neuroprotective lead optimized compound (LOC)14, that acts as a modulator of PDI. LOC14 was identified using a high-throughput screen of ∼10,000 lead-optimized compounds for potent rescue of viability of PC12 cells expressing mutant huntingtin protein, followed by an evaluation of compounds on PDI reductase activity in an in vitro screen. Isothermal titration calorimetry and fluorescence experiments revealed that binding to PDI was reversible with a Kd of 62 nM, suggesting LOC14 to be the most potent PDI inhibitor reported to date. Using 2D heteronuclear single quantum correlation NMR experiments, we were able to map the binding site of LOC14 as being adjacent to the active site and to observe that binding of LOC14 forces PDI to adopt an oxidized conformation. Furthermore, we found that LOC14-induced oxidation of PDI has a neuroprotective effect not only in cell culture, but also in corticostriatal brain slice cultures. LOC14 exhibited high stability in mouse liver microsomes and blood plasma, low intrinsic microsome clearance, and low plasma-protein binding. These results suggest that LOC14 is a promising lead compound to evaluate the potential therapeutic effects of modulating PDI in animal models of disease.


Oncotarget | 2016

IKK/NF-κB signaling contributes to glioblastoma stem cell maintenance

Amanda L. Rinkenbaugh; Patricia C. Cogswell; Barbara Calamini; Denise E. Dunn; Anders Persson; William A. Weiss; Donald C. Lo; Albert S. Baldwin

Glioblastoma multiforme (GBM) carries a poor prognosis and continues to lack effective treatments. Glioblastoma stem cells (GSCs) drive tumor formation, invasion, and drug resistance and, as such, are the focus of studies to identify new therapies for disease control. Here, we identify the involvement of IKK and NF-κB signaling in the maintenance of GSCs. Inhibition of this pathway impairs self-renewal as analyzed in tumorsphere formation and GBM expansion as analyzed in brain slice culture. Interestingly, both the canonical and non-canonical branches of the NF-κB pathway are shown to contribute to this phenotype. One source of NF-κB activation in GBM involves the TGF-β/TAK1 signaling axis. Together, our results demonstrate a role for the NF-κB pathway in GSCs and provide a mechanistic basis for its potential as a therapeutic target in glioblastoma.


Human Molecular Genetics | 2017

IKKβ and mutant huntingtin interactions regulate the expression of IL-34: implications for microglial-mediated neurodegeneration in HD

Ali Khoshnan; Adam Sabbaugh; Barbara Calamini; Steven Marinero; Denise E. Dunn; Jung Hyun Yoo; Jan Ko; Donald C. Lo; Paul H. Patterson

Neuronal interleukin-34 (IL-34) promotes the expansion of microglia in the central nervous system-microglial activation and expansion are in turn implicated in the pathogenesis of Huntingtons disease (HD). We thus examined whether the accumulation of an amyloidogenic exon-1 fragment of mutant huntingtin (mHTTx1) modulates the expression of IL-34 in dopaminergic neurons derived from a human embryonic stem cell line. We found that mHTTx1 aggregates induce IL-34 production selectively in post-mitotic neurons. Exposure of neurons to DNA damaging agents or the excitotoxin NMDA elicited similar results suggesting that IL-34 induction may be a general response to neuronal stress including the accumulation of misfolded mHTTx1. We further determined that knockdown or blocking the activity of IκB kinase beta (IKKβ) prevented the aggregation of mHTTx1 and subsequent IL-34 production. While elevated IL-34 itself had no effect on the aggregation or the toxicity of mHTTx1 in neuronal culture, IL-34 expression in a rodent brain slice model with intact neuron-microglial networks exacerbated mHTTx1-induced degeneration of striatal medium-sized spiny neurons. Conversely, an inhibitor of the IL-34 receptor reduced microglial numbers and ameliorated mHTTx1-mediated neurodegeneration. Together, these findings uncover a novel function for IKKβ/mHTTx1 interactions in regulating IL-34 production, and implicate a role for IL-34 in non-cell-autonomous, microglial-dependent neurodegeneration in HD.


Scientific Reports | 2016

Dual activities of the anti-cancer drug candidate PBI-05204 provide neuroprotection in brain slice models for neurodegenerative diseases and stroke

Michael J. Van Kanegan; Denise E. Dunn; Linda S. Kaltenbach; Bijal D. Shah; Dong Ning He; Daniel D. McCoy; Peiying Yang; Jiangnan Peng; Li Shen; Lin Du; Robert H. Cichewicz; Robert A. Newman; Donald C. Lo

We previously reported neuroprotective activity of the botanical anti-cancer drug candidate PBI-05204, a supercritical CO2 extract of Nerium oleander, in brain slice and in vivo models of ischemic stroke. We showed that one component of this neuroprotective activity is mediated through its principal cardiac glycoside constituent, oleandrin, via induction of the potent neurotrophic factor brain-derived neurotrophic factor (BDNF). However, we also noted that the concentration-relation for PBI-05204 in the brain slice oxygen-glucose deprivation (OGD) model is considerably broader than that for oleandrin as a single agent. We thus surmised that PBI-05204 contains an additional neuroprotective component(s), distinct from oleandrin. We report here that neuroprotective activity is also provided by the triterpenoid constituents of PBI-05204, notably oleanolic acid. We demonstrate that a sub-fraction of PBI-05204 (Fraction 0–4) containing oleanolic and other triterpenoids, but without cardiac glycosides, induces the expression of cellular antioxidant gene transcription programs regulated through antioxidant transcriptional response elements (AREs). Finally, we show that Fraction 0–4 provides broad neuroprotection in organotypic brain slice models for neurodegeneration driven by amyloid precursor protein (APP) and tau implicated in Alzheimer’s disease and frontotemporal dementias, respectively, in addition to ischemic injury modeled by OGD.

Collaboration


Dive into the Denise E. Dunn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul H. Patterson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Peiying Yang

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Robert A. Newman

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ali Khoshnan

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge