Denise J. Montell
University of California, Santa Barbara
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denise J. Montell.
Nature Reviews Cancer | 2005
Honami Naora; Denise J. Montell
Despite considerable efforts to improve early detection, and advances in chemotherapy, metastasis remains a major challenge in the clinical management of ovarian cancer. Studies of new murine models are providing novel insights into the pathophysiology of ovarian cancer, but these models are not readily amenable to genetic screens. Genetic analysis of border-cell migration in the Drosophila melanogaster ovary provides clues that will improve our understanding of ovarian cancer metastasis at the molecular level, and also might lead to potential therapeutic targets.
Cell | 2001
Debra L. Silver; Denise J. Montell
The JAK/STAT signaling pathway, renowned for its effects on cell proliferation and survival, is constitutively active in various human cancers, including ovarian. We have found that JAK and STAT are required to convert the border cells in the Drosophila ovary from stationary, epithelial cells to migratory, invasive cells. The ligand for this pathway, Unpaired (UPD), is expressed by two central cells within the migratory cell cluster. Mutations in upd or jak cause defects in migration and a reduction in the number of cells recruited to the cluster. Ectopic expression of either UPD or JAK is sufficient to induce extra epithelial cells to migrate. Thus, a localized signal activates the JAK/STAT pathway in neighboring epithelial cells, causing them to become invasive.
Cell | 2000
Jianwu Bai; Yoshihiko Uehara; Denise J. Montell
Steroid hormones are key regulators of numerous physiological and developmental processes, including metastasis of breast and ovarian cancer. Here we report the identification of a Drosophila gene, named taiman, which encodes a steroid hormone receptor coactivator related to AIB1. Mutations in tai caused defects in the migration of specific follicle cells, the border cells, in the Drosophila ovary. Mutant cells exhibited abnormal accumulation of E-cadherin, beta-catenin, and focal adhesion kinase. TAI protein colocalized with the ecdysone receptor in vivo and augmented transcriptional activation by the ecdysone receptor in cultured cells. The finding of this type of coactivator required for cell motility suggests a novel role for steroid hormones, in stimulating invasive cell behavior, independent of effects on proliferation.
Nature Reviews Molecular Cell Biology | 2003
Denise J. Montell
The conversion of stationary epithelial cells into migratory, invasive cells is important for normal embryonic development and tumour metastasis. Border-cell migration in the ovary of Drosophila melanogaster has emerged as a simple, genetically tractable model for studying this process. Three distinct signals, which are also upregulated in cancer, control border-cell migration, so identifying further genes that are involved in border-cell migration could provide new insights into tumour invasion.
Nature Cell Biology | 2010
Xiaobo Wang; Li-Li He; Yi I. Wu; Klaus M. Hahn; Denise J. Montell
The small GTPase Rac induces actin polymerization, membrane ruffling and focal contact formation in cultured single cells but can either repress or stimulate motility in epithelial cells depending on the conditions. The role of Rac in collective epithelial cell movements in vivo, which are important for both morphogenesis and metastasis, is therefore difficult to predict. Recently, photoactivatable analogues of Rac (PA-Rac) have been developed, allowing rapid and reversible activation or inactivation of Rac using light. In cultured single cells, light-activated Rac leads to focal membrane ruffling, protrusion and migration. Here we show that focal activation of Rac is also sufficient to polarize an entire group of cells in vivo, specifically the border cells of the Drosophila ovary. Moreover, activation or inactivation of Rac in one cell of the cluster caused a dramatic response in the other cells, suggesting that the cells sense direction as a group according to relative levels of Rac activity. Communication between cells of the cluster required Jun amino-terminal kinase (JNK) but not guidance receptor signalling. These studies further show that photoactivatable proteins are effective tools in vivo.
Cancer Research | 2004
Debra L. Silver; Honami Naora; Jinsong Liu; Wenjun Cheng; Denise J. Montell
Constitutive activation of the Janus-activated kinase/signal transducer and activator of transcription (STAT) pathway promotes the proliferation and survival of cancer cells in culture and is associated with various cancers, including those of the ovary. We found that constitutively activated STAT3 levels correlated with aggressive clinical behavior of ovarian carcinoma specimens. Furthermore, inhibition of STAT3 reduced the motility of ovarian cancer cells in vitro. Surprisingly, we found that activated STAT3 localized not only to nuclei but also to focal adhesions in these cells. Activated STAT3 coimmunoprecipitated with phosphorylated paxillin and focal adhesion kinase and required paxillin and Src for its localization to focal adhesions. These results suggest that Janus-activated kinase/STAT signaling may contribute to ovarian cancer cell invasiveness.
Cell | 2014
Danfeng Cai; Shann Ching Chen; Mohit Prasad; Li He; Xiaobo Wang; Valerie Choesmel-Cadamuro; Jessica K. Sawyer; Gaudenz Danuser; Denise J. Montell
E-cadherin is a major homophilic cell-cell adhesion molecule that inhibits motility of individual cells on matrix. However, its contribution to migration of cells through cell-rich tissues is less clear. We developed an in vivo sensor of mechanical tension across E-cadherin molecules, which we combined with cell-type-specific RNAi, photoactivatable Rac, and morphodynamic profiling, to interrogate how E-cadherin contributes to collective migration of cells between other cells. Using the Drosophila ovary as a model, we found that adhesion between border cells and their substrate, the nurse cells, functions in a positive feedback loop with Rac and actin assembly to stabilize forward-directed protrusion and directionally persistent movement. Adhesion between individual border cells communicates direction from the lead cell to the followers. Adhesion between motile cells and polar cells holds the cluster together and polarizes each individual cell. Thus, E-cadherin is an integral component of the guidance mechanisms that orchestrate collective chemotaxis in vivo.
Nature Cell Biology | 2002
Erika R. Geisbrecht; Denise J. Montell
Myosin VI (MyoVI) is a pointed-end-directed, actin-based motor protein, and mutations in the gene result in disorganization of hair cell stereocilia and cause deafness in mice. MyoVI also localizes to the leading edges of growth-factor-stimulated fibroblast cells and has been suggested to be involved in cell motility. There has been no direct test of this hypothesis, however. Drosophila melanogaster MyoVI is expressed in a small group of migratory follicle cells, known as border cells. Here we show that depletion of MyoVI specifically from border cells severely inhibited their migration. Similar to MyoVI, E-cadherin is required for border cell migration. We found that E-cadherin and Armadillo (Arm, Drosophila β-catenin) protein levels were specifically reduced in cells lacking MyoVI, whereas other proteins were not. In addition, MyoVI protein levels were reduced in cells lacking DE-cadherin or Arm. MyoVI and Arm co-immunoprecipitated from ovarian protein extracts. These data suggest that MyoVI is required for border cell migration where it stabilizes E-cadherin and Arm. Mutations in MyoVIIA, another unconventional myosin protein, also lead to deafness, and MyoVIIA interacts with E-cadherin through a membrane protein called vezatin. Multiple biochemical mechanisms may exist, therefore, for cadherins to associate with diverse unconventional myosins that are required for normal stereocilium formation or maintenance.
Cell | 2004
Erika R. Geisbrecht; Denise J. Montell
Border cell migration in the Drosophila ovary is a relatively simple and genetically tractable model for studying the conversion of epithelial cells to migratory cells. Like many cell migrations, border cell migration is inhibited by a dominant-negative form of the GTPase Rac. To identify new genes that function in Rac-dependent cell motility, we screened for genes that when overexpressed suppressed the migration defect caused by dominant-negative Rac. Overexpression of the Drosophila inhibitor of apoptosis 1 (DIAP1), which is encoded by the thread (th) gene, suppressed the migration defect. Moreover, loss-of-function mutations in th caused migration defects but, surprisingly, did not cause apoptosis. Mutations affecting the Dark protein, an activator of the upstream caspase Dronc, also rescued RacN17 migration defects. These results indicate an apoptosis-independent role for DIAP1-mediated Dronc inhibition in Rac-mediated cell motility.
Development | 2002
Jianwu Bai; Denise J. Montell
Throughout Drosophila oogenesis, specialized somatic follicle cells perform crucial functions in egg chamber formation and in signaling between somatic and germline cells. In the ovary, at least three types of somatic follicle cells, polar cells, stalk cells and main body epithelial follicle cells, can be distinguished when egg chambers bud from the germarium. Although specification of these three somatic cell types is important for normal oogenesis and subsequent embryogenesis, the molecular basis for establishment of their cell fates is not completely understood. Our studies reveal the gene eyes absent (eya) to be a key repressor of polar cell fate. EYA is a nuclear protein that is normally excluded from polar and stalk cells, and the absence of EYA is sufficient to cause epithelial follicle cells to develop as polar cells. Furthermore, ectopic expression of EYA is capable of suppressing normal polar cell fate and compromising the normal functions of polar cells, such as promotion of border cell migration. Finally, we show that ectopic Hedgehog signaling, which is known to cause ectopic polar cell formation, does so by repressing eya expression in epithelial follicle cells.