Denise M. Kay
New York State Department of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denise M. Kay.
Lancet Neurology | 2008
Daniel G. Healy; Mario Falchi; Sean S. O'Sullivan; Vincenzo Bonifati; Alexandra Durr; Susan Bressman; Alexis Brice; Jan O. Aasly; Cyrus P. Zabetian; Stefano Goldwurm; Joaquim J. Ferreira; Eduardo Tolosa; Denise M. Kay; Christine Klein; David R. Williams; Connie Marras; Anthony E. Lang; Zbigniew K. Wszolek; José Berciano; A. H. V. Schapira; Timothy Lynch; Kailash P. Bhatia; Thomas Gasser; Andrew J. Lees; Nicholas W. Wood
Summary Background Mutations in LRRK2, the gene that encodes leucine-rich repeat kinase 2, are a cause of Parkinsons disease (PD). The International LRRK2 Consortium was established to answer three key clinical questions: can LRRK2-associated PD be distinguished from idiopathic PD; which mutations in LRRK2 are pathogenic; and what is the age-specific cumulative risk of PD for individuals who inherit or are at risk of inheriting a deleterious mutation in LRRK2? Methods Researchers from 21 centres across the world collaborated on this study. The frequency of the common LRRK2 Gly2019Ser mutation was estimated on the basis of data from 24 populations worldwide, and the penetrance of the mutation was defined in 1045 people with mutations in LRRK2 from 133 families. The LRRK2 phenotype was defined on the basis of 59 motor and non-motor symptoms in 356 patients with LRRK2-associated PD and compared with the symptoms of 543 patients with pathologically proven idiopathic PD. Findings Six mutations met the consortiums criteria for being proven pathogenic. The frequency of the common LRRK2 Gly2019Ser mutation was 1% of patients with sporadic PD and 4% of patients with hereditary PD; the frequency was highest in the middle east and higher in southern Europe than in northern Europe. The risk of PD for a person who inherits the LRRK2 Gly2019Ser mutation was 28% at age 59 years, 51% at 69 years, and 74% at 79 years. The motor symptoms (eg, disease severity, rate of progression, occurrence of falls, and dyskinesia) and non-motor symptoms (eg, cognition and olfaction) of LRRK2-associated PD were more benign than those of idiopathic PD. Interpretation Mutations in LRRK2 are a clinically relevant cause of PD that merit testing in patients with hereditary PD and in subgroups of patients with PD. However, this knowledge should be applied with caution in the diagnosis and counselling of patients. Funding UK Medical Research Council; UK Parkinsons Disease Society; UK Brain Research Trust; Internationaal Parkinson Fonds; Volkswagen Foundation; National Institutes of Health: National Institute of Neurological Disorders and Stroke and National Institute of Aging; Udall Parkinsons Disease Centre of Excellence; Pacific Alzheimer Research Foundation Centre; Italian Telethon Foundation; Fondazione Grigioni per il Morbo di Parkinson; Michael J Fox Foundation for Parkinsons Research; Safra Global Genetics Consortium; US Department of Veterans Affairs; French Agence Nationale de la Recherche.
Nature Genetics | 2010
Taye H. Hamza; Cyrus P. Zabetian; Albert Tenesa; Alain Laederach; Jennifer S. Montimurro; Dora Yearout; Denise M. Kay; Kimberly F. Doheny; Justin Paschall; Elizabeth W. Pugh; Victoria I. Kusel; Randall Collura; John Roberts; Alida Griffith; Ali Samii; William K. Scott; John G. Nutt; Stewart A. Factor; Haydeh Payami
Parkinsons disease is a common disorder that leads to motor and cognitive disability. We performed a genome-wide association study of 2,000 individuals with Parkinsons disease (cases) and 1,986 unaffected controls from the NeuroGenetics Research Consortium (NGRC). We confirmed associations with SNCA and MAPT, replicated an association with GAK (using data from the NGRC and a previous study, P = 3.2 × 10−9) and detected a new association with the HLA region (using data from the NGRC only, P = 2.9 × 10−8), which replicated in two datasets (meta-analysis P = 1.9 × 10−10). The HLA association was uniform across all genetic and environmental risk strata and was strong in sporadic (P = 5.5 × 10−10) and late-onset (P = 2.4 × 10−8) disease. The association peak we found was at rs3129882, a noncoding variant in HLA-DRA. Two studies have previously suggested that rs3129882 influences expression of HLA-DR and HLA-DQ. The brains of individuals with Parkinsons disease show upregulation of DR antigens and the presence of DR-positive reactive microglia, and nonsteroidal anti-inflammatory drugs reduce Parkinsons disease risk. The genetic association with HLA supports the involvement of the immune system in Parkinsons disease and offers new targets for drug development.
JAMA | 2014
Antonia Kwan; Roshini S. Abraham; Robert Currier; Amy Brower; Karen Andruszewski; Jordan K. Abbott; Mei W. Baker; Mark Ballow; Louis Bartoshesky; Francisco A. Bonilla; Charles D. Brokopp; Edward G. Brooks; Michele Caggana; Jocelyn Celestin; Joseph A. Church; Anne Marie Comeau; James A. Connelly; Morton J. Cowan; Charlotte Cunningham-Rundles; Trivikram Dasu; Nina Dave; Maria Teresa De La Morena; Ulrich A. Duffner; Chin To Fong; Lisa R. Forbes; Debra Freedenberg; Erwin W. Gelfand; Jaime E. Hale; I. Celine Hanson; Beverly N. Hay
IMPORTANCE Newborn screening for severe combined immunodeficiency (SCID) using assays to detect T-cell receptor excision circles (TRECs) began in Wisconsin in 2008, and SCID was added to the national recommended uniform panel for newborn screened disorders in 2010. Currently 23 states, the District of Columbia, and the Navajo Nation conduct population-wide newborn screening for SCID. The incidence of SCID is estimated at 1 in 100,000 births. OBJECTIVES To present data from a spectrum of SCID newborn screening programs, establish population-based incidence for SCID and other conditions with T-cell lymphopenia, and document early institution of effective treatments. DESIGN Epidemiological and retrospective observational study. SETTING Representatives in states conducting SCID newborn screening were invited to submit their SCID screening algorithms, test performance data, and deidentified clinical and laboratory information regarding infants screened and cases with nonnormal results. Infants born from the start of each participating program from January 2008 through the most recent evaluable date prior to July 2013 were included. Representatives from 10 states plus the Navajo Area Indian Health Service contributed data from 3,030,083 newborns screened with a TREC test. MAIN OUTCOMES AND MEASURES Infants with SCID and other diagnoses of T-cell lymphopenia were classified. Incidence and, where possible, etiologies were determined. Interventions and survival were tracked. RESULTS Screening detected 52 cases of typical SCID, leaky SCID, and Omenn syndrome, affecting 1 in 58,000 infants (95% CI, 1/46,000-1/80,000). Survival of SCID-affected infants through their diagnosis and immune reconstitution was 87% (45/52), 92% (45/49) for infants who received transplantation, enzyme replacement, and/or gene therapy. Additional interventions for SCID and non-SCID T-cell lymphopenia included immunoglobulin infusions, preventive antibiotics, and avoidance of live vaccines. Variations in definitions and follow-up practices influenced the rates of detection of non-SCID T-cell lymphopenia. CONCLUSIONS AND RELEVANCE Newborn screening in 11 programs in the United States identified SCID in 1 in 58,000 infants, with high survival. The usefulness of detection of non-SCID T-cell lymphopenias by the same screening remains to be determined.
PLOS Genetics | 2011
Taye H. Hamza; Honglei Chen; Erin M. Hill-Burns; Shannon L. Rhodes; Jennifer S. Montimurro; Denise M. Kay; Albert Tenesa; Victoria I. Kusel; Patricia Sheehan; Muthukrishnan Eaaswarkhanth; Dora Yearout; Ali Samii; John W. Roberts; Pinky Agarwal; Yikyung Park; Liyong Wang; Jianjun Gao; Jeffery M. Vance; Kenneth S. Kendler; Silviu Alin Bacanu; William K. Scott; Beate Ritz; John G. Nutt; Stewart A. Factor; Cyrus P. Zabetian; Haydeh Payami
Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinsons disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNPs main-effect plus its interaction with coffee, adjusting for sex, age, and two principal components. We then stratified subjects as heavy or light coffee-drinkers and performed genome-wide association study (GWAS) in each group. We replicated the most significant SNP. Finally, we imputed the NGRC dataset, increasing genomic coverage to examine the region of interest in detail. The primary analyses (GWAIS, GWAS, Replication) were performed using genotyped data. In GWAIS, the most significant signal came from rs4998386 and the neighboring SNPs in GRIN2A. GRIN2A encodes an NMDA-glutamate-receptor subunit and regulates excitatory neurotransmission in the brain. Achieving P2df = 10−6, GRIN2A surpassed all known PD susceptibility genes in significance in the GWAIS. In stratified GWAS, the GRIN2A signal was present in heavy coffee-drinkers (OR = 0.43; P = 6×10−7) but not in light coffee-drinkers. The a priori Replication hypothesis that “Among heavy coffee-drinkers, rs4998386_T carriers have lower PD risk than rs4998386_CC carriers” was confirmed: ORReplication = 0.59, PReplication = 10−3; ORPooled = 0.51, PPooled = 7×10−8. Compared to light coffee-drinkers with rs4998386_CC genotype, heavy coffee-drinkers with rs4998386_CC genotype had 18% lower risk (P = 3×10−3), whereas heavy coffee-drinkers with rs4998386_TC genotype had 59% lower risk (P = 6×10−13). Imputation revealed a block of SNPs that achieved P2df<5×10−8 in GWAIS, and OR = 0.41, P = 3×10−8 in heavy coffee-drinkers. This study is proof of concept that inclusion of environmental factors can help identify genes that are missed in GWAS. Both adenosine antagonists (caffeine-like) and glutamate antagonists (GRIN2A-related) are being tested in clinical trials for treatment of PD. GRIN2A may be a useful pharmacogenetic marker for subdividing individuals in clinical trials to determine which medications might work best for which patients.
Movement Disorders | 2008
Karen M. Powers; Denise M. Kay; Stewart A. Factor; Cyrus P. Zabetian; Donald S. Higgins; Ali Samii; John G. Nutt; Alida Griffith; Berta C. Leis; John W. Roberts; Erica Martinez; Jennifer S. Montimurro; Harvey Checkoway; Haydeh Payami
Inverse associations of Parkinsons disease (PD) with cigarette smoking, coffee drinking, and nonsteroidal anti‐inflammatory drug (NSAID) use have been reported individually, but their joint effects have not been examined. To quantify associations with PD for the individual, two‐way and three‐way combinations of these factors, a case–control association study with 1,186 PD patients and 928 controls was conducted. The study setting was the NeuroGenetics Research Consortium. Subjects completed a structured questionnaire regarding smoking, coffee, and NSAID consumption. Odds ratios were calculated using unconditional logistic regression. Smoking, coffee, and over the counter NSAID use as individual factors exhibited significantly reduced risks of 20% to 30%. The two‐way and three‐way combinations were associated with risk reduction of 37% to 49%, and 62%, respectively. Smoking and coffee exhibited significant inverse risk trends with increasing cumulative exposures, suggesting dose–response relations. With respect to the combination of all three exposures, persons who were at the highest exposure strata for smoking and coffee and used NSAIDs had an estimated 87% reduction in risk (OR = 0.13, 95% CI = 0.06–0.29). Whether this finding reflects true biologic protection needs to be investigated.
JAMA Neurology | 2010
Ignacio F. Mata; Min Shi; Pinky Agarwal; Kathryn A. Chung; Karen L. Edwards; Stewart A. Factor; Douglas Galasko; Carmen Ginghina; Alida Griffith; Donald S. Higgins; Denise M. Kay; Hojoong Kim; James B. Leverenz; Joseph F. Quinn; John W. Roberts; Ali Samii; Katherine W. Snapinn; Debby W. Tsuang; Dora Yearout; Jing Zhang; Haydeh Payami; Cyrus P. Zabetian
BACKGROUND A functional repeat polymorphism in the SNCA promoter (REP1) conveys susceptibility for Parkinson disease (PD). There is also increasing evidence that single-nucleotide polymorphisms (SNPs) elsewhere in the gene are associated with PD risk. OBJECTIVES To further explore the association of common SNCA SNPs with PD susceptibility, to determine whether evidence of allelic heterogeneity exists, and to examine the correlation between PD-associated variants and plasma α-synuclein levels. DESIGN Two-tiered analysis. SETTING Academic research. PATIENTS Patients and control subjects from the NeuroGenetics Research Consortium. MAIN OUTCOME MEASURES We performed a 2-tiered analysis of 1956 patients with PD and 2112 controls from the NeuroGenetics Research Consortium using a comprehensive tag SNP approach. Previously published REP1 genotypes were also included. Plasma α-synuclein was assayed in 86 patients with PD and 78 controls using a highly sensitive Luminex assay. RESULTS Five of 15 SNPs genotyped were associated with PD under an additive model in tier 1 (α = .05). Of these, 4 were successfully replicated in tier 2. In the combined sample, the most significant marker was rs356219 (odds ratio, 1.41; 95% confidence interval, 1.28-1.55; P = 1.6 × 10(-12)), located approximately 9 kilobases downstream from the gene. A regression model containing rs356219 alone best fit the data. The linkage disequilibrium correlation coefficient between this SNP and REP1 was low (r(2) = 0.09). The risk-associated C allele of rs356219 was also correlated with higher transformed plasma α-synuclein levels in patients under an adjusted additive model (P = .005). CONCLUSIONS Our data suggest that 1 or more unidentified functional SNCA variants modify risk for PD and that the effect is larger than and independent of REP1. This variant(s), tagged by rs356219, might act by upregulating SNCA expression in a dose-dependent manner.
Annals of Neurology | 2007
Denise M. Kay; Dawn Moran; Lina Moses; Parvoneh Poorkaj; Cyrus P. Zabetian; John G. Nutt; Stewart A. Factor; Chang En Yu; Jennifer S. Montimurro; Robert G. Keefe; Gerard D. Schellenberg; Haydeh Payami
Homozygous or compound heterozygous parkin mutations cause juvenile parkinsonism. Heterozygous parkin mutations are also found in patients with typical Parkinsons disease (PD), but it is unclear whether a single “mutation” in a patient is related to disease or is coincidental, because the mutation frequency in control subjects is unknown. We present a comprehensive sequence analysis of parkin in control subjects.
Annals of Neurology | 2007
Cyrus P. Zabetian; Carolyn M. Hutter; Stewart A. Factor; John G. Nutt; Donald S. Higgins; Alida Griffith; John W. Roberts; Berta C. Leis; Denise M. Kay; Dora Yearout; Jennifer S. Montimurro; Karen L. Edwards; Ali Samii; Haydeh Payami
An inversion polymorphism of approximately 900kb on chromosome 17q21, which includes the microtubule‐associated protein tau (MAPT) gene defines two haplotype clades, H1 and H2. Several small case–control studies have observed a marginally significant excess of the H1/H1 diplotype among patients with Parkinsons disease (PD), and one reported refining the association to a region spanning exons 1 to 4 of MAPT. We sought to replicate these findings.
American Journal of Human Genetics | 2006
Cyrus P. Zabetian; Carolyn M. Hutter; Dora Yearout; Alexis N. Lopez; Stewart A. Factor; Alida Griffith; Berta C. Leis; Bird Td; John G. Nutt; Donald S. Higgins; John W. Roberts; Denise M. Kay; Karen L. Edwards; Ali Samii; Haydeh Payami
The leucine-rich repeat kinase 2 (LRRK2) G2019S mutation is the most common genetic determinant of Parkinson disease (PD) identified to date. It accounts for 1%-7% of PD in patients of European origin and 20%-40% in Ashkenazi Jews and North African Arabs with PD. Previous studies concluded that patients from these populations all shared a common Middle Eastern founder who lived in the 13th century. We tested this hypothesis by genotyping 25 microsatellite and single-nucleotide-polymorphism markers in 22 families with G2019S and observed two distinct haplotypes. Haplotype 1 was present in 19 families of Ashkenazi Jewish and European ancestry, whereas haplotype 2 occurred in three European American families. Using a maximum-likelihood method, we estimated that the families with haplotype 1 shared a common ancestor 2,250 (95% confidence interval 1,650-3,120) years ago, whereas those with haplotype 2 appeared to share a more recent founder. Our data suggest two separate founding events for G2019S in these populations, beginning at a time that coincides with the Jewish Diasporas.
Movement Disorders | 2006
Denise M. Kay; Cyrus P. Zabetian; Stewart A. Factor; John G. Nutt; Ali Samii; Alida Griffith; Bird Td; Patricia L. Kramer; Donald S. Higgins; Haydeh Payami
The G2019S mutation in the LRRK2 gene is reportedly a common cause of familial Parkinsons disease (PD) and may also have a significant role in nonfamilial PD. The objective of this study was to assess mutation carrier frequency in PD patients from movement disorder clinics in the United States, stratified by family history, age at onset, and geography; to determine carrier frequency in a large and well‐characterized control population; to examine segregation of mutation in families of patients; and to correlate genotype with clinical phenotype. One thousand four hundred twenty‐five unrelated PD patients from movement disorder clinics in Oregon, Washington, and New York and 1,647 unrelated controls were studied. The G2019S mutation was detected using a TaqMan assay and verified by sequencing. Eighteen of 1,425 patients and one of 1,647 controls had the mutation. Carrier frequency (± 2SE) in patients was 0.013 ± 0.006 overall, 0.030 ± 0.019 in familial PD, 0.007 ± 0.005 in nonfamilial PD, 0.016 ± 0.013 in early‐onset PD, and 0.012 ± 0.007 in late‐onset PD. Geographic differences were insignificant. Age at onset of mutation carriers ranged from 28 to 71 years. Mutation carriers were clinically indistinguishable from idiopathic PD. LRRK2 G2019S is the single most common pathogenic mutation linked to neurodegenerative disease to date.