Denise O'Rourke
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Denise O'Rourke.
Journal of Clinical Microbiology | 2009
Penelope A. Steer; Naomi C. Kirkpatrick; Denise O'Rourke; Amir H. Noormohammadi
ABSTRACT Identification of fowl adenovirus (FAdV) serotypes is of importance in epidemiological studies of disease outbreaks and the adoption of vaccination strategies. In this study, real-time PCR and subsequent high-resolution melting (HRM)-curve analysis of three regions of the hexon gene were developed and assessed for their potential in differentiating 12 FAdV reference serotypes. The results were compared to previously described PCR and restriction enzyme analyses of the hexon gene. Both HRM-curve analysis of a 191-bp region of the hexon gene and restriction enzyme analysis failed to distinguish a number of serotypes used in this study. In addition, PCR of the region spanning nucleotides (nt) 144 to 1040 failed to amplify FAdV-5 in sufficient quantities for further analysis. However, HRM-curve analysis of the region spanning nt 301 to 890 proved a sensitive and specific method of differentiating all 12 serotypes. All melt curves were highly reproducible, and replicates of each serotype were correctly genotyped with a mean confidence value of more than 99% using normalized HRM curves. Sequencing analysis revealed that each profile was related to a unique sequence, with some sequences sharing greater than 94% identity. Melting-curve profiles were found to be related mainly to GC composition and distribution throughout the amplicons, regardless of sequence identity. The results presented in this study show that the closed-tube method of PCR and HRM-curve analysis provides an accurate, rapid, and robust genotyping technique for the identification of FAdV serotypes and can be used as a model for developing genotyping techniques for other pathogens.
Avian Diseases | 2006
Naomi C. Kirkpatrick; Alireza Mahmoudian; Denise O'Rourke; Amir H. Noormohammadi
Abstract Infectious laryngotracheitis (ILT) has been identified in most countries around the world and remains a threat to the intensive poultry industry. Outbreaks of mild to moderate forms of ILT are common in commercial layer flocks, while sporadic outbreaks of ILT in broiler flocks have also been recognized as an emerging problem in several countries. Examination of viral isolates using restriction fragment length polymorphism of polymerase chain reaction (PCR-RFLP) from individual ILTV genes has suggested that some of these outbreaks were caused by vaccine strains. In this study, PCR-RFLP of a number of ILTV genes/genomic regions including gE, gG, TK, ICP4, ICP18.5, and open reading frame (ORF) B-TK was used to examine a number of historical and contemporary Australian ILTV isolates and vaccine strains. PCR-RFLP of gE using restriction endonuclease EaeI failed to distinguish between any of the isolates including the vaccine strains. PCR-RFLP of gG, TK, and ORFB-TK using restriction endonucleases MspI and FokI, respectively, divided all the isolates into two groups. PCR-RFLP of ICP18.5 and ICP4 using restriction endonuclease HaeIII separated the isolates into three different groups with some field isolates only able to be distinguished from vaccine strains by PCR-RFLP of ICP18.5. A combination of groupings including gG, TK, ICP4, ICP18.5, and ORFB-TK PCR-RFLP classified the ILTV isolates under investigation into five different groups with most isolates distinguishable from vaccine strains. Results from this study reveal that to achieve reliable identification of strains of ILTV, the examination of multiple gene regions will be required, and that most of the recent ILT outbreaks in Australia are not being caused by vaccine strains.
Journal of Applied Microbiology | 2009
T. Robertson; S. Bibby; Denise O'Rourke; T. Belfiore; H. Lambie; Amir H. Noormohammadi
Aim: To design a rapid diagnostic test to differentiate species belonging to the family Chlamydiaceae.
Australian Veterinary Journal | 2011
Hp Blacker; Naomi C. Kirkpatrick; A Rubite; Denise O'Rourke; Amir H. Noormohammadi
OBJECTIVE Over the past 3 years, numerous outbreaks of infectious laryngotracheitis (ILT) have occurred in poultry in Australia. The objectives of this study were to identify the viral strains involved in the recent outbreaks and to determine possible epidemiological links between these outbreaks. PROCEDURE A combination of polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analyses of several genes of the ILT virus was used to identify genetic differences in field/vaccine ILT virus isolates. In a previous study, these procedures had demonstrated five classes (1-5) in Australia. RESULTS Analysis of 92 field ILT viruses demonstrated four new classes: 6, 7, 8 and 9. Class 6 was responsible for four outbreaks in one Victorian broiler company and demonstrated to be distinct from other Australian strains of ILT. Class 7 was the Nobilis ILT vaccine (Intervet Pty Ltd). Class 8 was responsible for the majority of the outbreaks in New South Wales and was phylogenetically close to class 7. On one occasion, classes 7 and 8 were identified in an outbreak on a Victorian farm that had used the Nobilis ILT vaccine. Class 9, also phylogenetically close to classes 7 and 8, was found only in New South Wales. The previously identified class 2 was also found to be responsible for a large number of outbreaks, mainly in Victoria. CONCLUSION The results demonstrate that, epidemiologically, most outbreaks of ILT in New South Wales are unrelated to those in Victoria and suggest a link between classes 8 and 9 and the Nobilis ILT vaccine (class 7).
Australian Veterinary Journal | 2011
Penelope A. Steer; Denise O'Rourke; Seyed Ali Ghorashi; Amir H. Noormohammadi
OBJECTIVE Fowl adenoviruses (FAdVs) cause inclusion body hepatitis (IBH) in chickens. In this study, clinical cases of IBH from Australian broiler flocks were screened for the presence and genotype of FAdVs. METHODS Twenty-six IBH cases from commercial poultry farms were screened. Polymerase chain reaction (PCR) coupled with high-resolution melt (HRM) curve analysis (PCR/HRM genotyping) was used to determine the presence and genotype of FAdVs. For comparison, field isolates were also assessed by virus microneutralisation and nucleotide sequence analysis of the hexon loop 1 (Hex L1) gene. PCR detection of chicken anaemia virus (CAV) and infectious bursal disease virus (IBDV) was also employed. RESULTS FAdV-8b and FAdV-11 were identified in 13 cases each. In one case, FAdV-1 was also identified. Cross-neutralisation was observed between the FAdV-11 field strain and the reference FAdV-2 and 11 antisera, a result also seen with the type 2 and 11 reference FAdVs. Field strains 1 and 8b were neutralised only by their respective type antisera. The FAdV-8b field strain was identical to the Australian FAdV vaccine strain (type 8b) in the Hex L1 region. The Hex L1 sequence of the FAdV-11 field strain had the highest identity to FAdV-11 (93.2%) and FAdV-2 (92.7%) reference strains. In the five cases tested for CAV and IBDV, neither virus was detected. The evidence suggested the presence of sufficient antibodies against CAV and IBD in the parent flocks and there was no indication of immunosuppression caused by these viruses. CONCLUSION These results indicate that PCR/HRM genotyping is a reliable diagnostic method for FAdV identification and is more rapid than virus neutralisation and direct sequence analysis. Furthermore, they suggest that IBH in Australian broiler flocks is a primary disease resulting from two alternative FAdV strains from different species.
Veterinary Microbiology | 2010
T. Robertson; S. Bibby; Denise O'Rourke; T. Belfiore; Rebecca Agnew-Crumpton; Amir H. Noormohammadi
Recently, a PCR protocol (16SG), targeting 16S rRNA gene coupled with high resolution melt (HRM) curve analysis was developed in our laboratory and shown to reliably detect and identify the seven different Chlamydiaceae spp. In this study, the potential of this method was assessed for detection and differentiation of Chlamydiosis in clinical specimens. Of the total number of 733 specimens from a range of animal species, 219 (30%) were found positive by 16SG PCR. When a sufficient amount of DNA was available (64 submissions), amplicons generated by the 16SG PCR were subjected to HRM curve analysis and results were compared to that of nucleotide sequencing. In all instances, the infecting Chlamydiaceae spp. was genotyped according to the identity of its nucleotide sequence to a reference species. Analysis of the HRM curves and nucleotide sequences from 16SG PCR amplicons also revealed the occurrence of a Chlamydophila-like, a Parachlamydia-like and a variant of Chlamydophila psittaci in chickens. These results reveal the potential of 16SG PCR-HRM curve analysis for rapid and simultaneous detection and identification of Chlamydiaceae spp. in animals and demonstrate the capacity of this system for rapid identification of new Chlamydiaceae spp. in animals during routine diagnostic testings.
Avian Pathology | 2015
Penelope A. Steer; Jeanine. Sandy; Denise O'Rourke; Peter C. Scott; Glenn F. Browning; Amir H. Noormohammadi
Fowl adenoviruses (FAdVs) cause diseases in domestic chickens, including inclusion body hepatitis (IBH), with immunosuppression believed to play a role in their pathogenesis. To gain a better understanding of the pathogenesis and chronology of disease caused by FAdVs, the gross pathology, histopathology and dissemination of virus were examined at several different time points, after inoculation of one-day-old specific pathogen-free chickens with FAdV-1, FAdV-8b or FAdV-11 via the ocular route. FAdV-8b had a slightly greater virulence than FAdV-11, but both were primary pathogens. The presence and severity of hepatic lesions were used to define the three stages of the disease: incubation (1–3 days post-inoculation, PI), degeneration (4–7 days PI) and convalescence (14 days PI). Both viruses were detected in the liver, kidney, bursa, thymus and gizzard of most birds during the degenerative stage, and persisted in the gizzard into convalescence. The FAdV-1 isolate was found to be apathogenic, but virus was detected in the bursa and/or gizzard of several birds between 2 and 7 days PI. This is the first study examining the chronology of gross and microscopic lesions of pathogenic and apathogenic FAdVs in association with viral presence in multiple tissues. It was concluded that both FAdV-8b and FAdV-11 are primary pathogens, and that these strains may play a role in immunosuppression.
Journal of Virological Methods | 2011
Seyed Ali Ghorashi; Denise O'Rourke; Jagoda Ignjatovic; Amir H. Noormohammadi
Differentiation of infectious bursal disease virus (IBDV) strains is crucial for effective vaccination programs and epidemiological investigations. In this study, a combination of real-time RT-PCR and high resolution melt (HRM) curve analysis was developed for simultaneous detection and differentiation of IBDV strains/isolates. The hypervariable region of VP2 gene was amplified from several IBDV strains and subjected to HRM curve analysis. The method could readily differentiate between classical vaccines/isolates and variants. Analysis of the nucleotide sequence of the amplicons from each strain revealed that each melt curve profile was related to a unique DNA sequence. The real-time RT-PCR HRM curve analysis was also able to differentiate IBDV strains/isolates directly in bursal tissues from field submissions and from vaccinated commercial flocks. The differences between melting peaks generated from IBDV strains were significantly different (P<0.0001) demonstrating the high discriminatory power of this technique. The results presented in this study indicated that real-time RT-PCR followed by HRM curve analysis provides a rapid and robust technique for genotyping IBDV isolates/strains and can contribute to effective control of IBDV outbreaks.
Avian Diseases | 2002
Amir H. Noormohammadi; Glenn F. Browning; Peter J. Cowling; Denise O'Rourke; Kevin G. Whithear; Philip F. Markham
SUMMARY. Mycoplasma gallisepticum is a poultry pathogen that causes respiratory disease and loss of egg production worldwide. A live attenuated vaccine, ts-11, has been used for control of M. gallisepticum in several countries. The rapid serum agglutination test is usually used as an indicator of flock response to vaccination; however, in some flocks, the detected response may be weak or absent. With the use of specific monoclonal antibodies against M. gallisepticum strain S6 pMGA in immunoaffinity purification, the major membrane antigen of ts-11 was purified. An indirect enzyme-linked immunosorbent assay (ELISA) was developed with the purified antigen, and its potential for detection of antibodies induced after ts-11 vaccination was compared with an indirect ELISA with M. gallisepticum strain S6 pMGA. In the presence of high levels of ts-11–induced antibodies, both antigens detected similar numbers of positive sera. However, when lower levels of antibodies were present, ts-11 pMGA showed a higher sensitivity than S6 pMGA. Further examination of ts-11 pMGA with Mycoplasma synoviae–infected chicken sera revealed that ts-11 pMGA is specific for M. gallisepticum antibodies. With a panel of sera from ts-11–vaccinated or non-ts-11–vaccinated field chickens, the ts-11 pMGA ELISA was found to be more sensitive than the commercial rapid serum agglutination test in detecting antibodies to ts-11 vaccine. The results from this study suggest that the major membrane antigen of M. gallisepticum may have slightly different antigenic profiles in different strains, thereby necessitating the use of autologous antigens in serodiagnostic assays to increase sensitivity of the tests for mycoplasma antibodies. Thus, the low level of antibody response after ts-11 vaccination is, at least partially, due to the low ability of the current diagnostic antigens to bind ts-11 antibodies.
Infection, Genetics and Evolution | 2016
Rebecca Agnew-Crumpton; Paola K. Vaz; Joanne M. Devlin; Denise O'Rourke; Hayley Patricia Blacker-Smith; Barbara Konsak-Ilievski; Carol A. Hartley; Amir H. Noormohammadi
Infectious laryngotracheitis (ILT) is a significant viral disease of chickens in many countries around the globe. In this report the status of ILT in Australia has been used as a model to evaluate the evolution of the ILT viruses (ILTVs). Due to its geographical isolation, Australia harbored a distinct lineage of ILT viruses (ILTV) up to 2007. However examination of the ILT viruses (ILTV) involved in outbreaks between 2007 and 2009 has revealed that many of the outbreaks were caused by two new viral genotypes, class 8 and class 9. These two recombinant viruses were found to emerge as a result of recombination between previously existing live vaccine strains (SA2 and A20), and another live vaccine strain (Serva) introduced into the country in 2007. The new recombinant ILTVs were also shown to possess significantly higher virulence and replication capacity compared with a previously predominant ILTV, class 2. In the current study, examination of a large number of ILTVs isolated from outbreaks between 2009 and 2015 revealed the emergence of yet another recombinant virus (class 10) that appears to have become a predominant genotype in New South Wales. In Victoria however, the recombinant class 9 gradually became the predominant virus, replacing class 2. Therefore, there was an unusual pattern in geographical spread of the newly emerged viruses in different states of the country. These results suggest that ILTV is fast evolving towards a greater transmissibility and therefore greater capacity to spread into ILTV-free areas.