Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denise P. Milot is active.

Publication


Featured researches published by Denise P. Milot.


Journal of Lipid Research | 2010

Biochemical characterization of cholesteryl ester transfer protein inhibitors

Mollie Ranalletta; Kathleen K. Bierilo; Ying Chen; Denise P. Milot; Qing Chen; Elaine Tung; Caroline Houde; Nadine H. Elowe; Margarita Garcia-Calvo; Gene Porter; Suzanne S. Eveland; Betsy Frantz-Wattley; Mike Kavana; George H. Addona; Peter J. Sinclair; Carl P. Sparrow; Edward A. O'Neill; Ken S. Koblan; Ayesha Sitlani; Brian K. Hubbard; Timothy S. Fisher

Cholesteryl ester transfer protein (CETP) has been identified as a novel target for increasing HDL cholesterol levels. In this report, we describe the biochemical characterization of anacetrapib, a potent inhibitor of CETP. To better understand the mechanism by which anacetrapib inhibits CETP activity, its biochemical properties were compared with CETP inhibitors from distinct structural classes, including torcetrapib and dalcetrapib. Anacetrapib and torcetrapib inhibited CETP-mediated cholesteryl ester and triglyceride transfer with similar potencies, whereas dalcetrapib was a significantly less potent inhibitor. Inhibition of CETP by both anacetrapib and torcetrapib was not time dependent, whereas the potency of dalcetrapib significantly increased with extended preincubation. Anacetrapib, torcetrapib, and dalcetrapib compete with one another for binding CETP; however anacetrapib binds reversibly and dalcetrapib covalently to CETP. In addition, dalcetrapib was found to covalently label both human and mouse plasma proteins. Each CETP inhibitor induced tight binding of CETP to HDL, indicating that these inhibitors promote the formation of a complex between CETP and HDL, resulting in inhibition of CETP activity.


European Journal of Pharmacology | 2001

High fat fed hamster, a unique animal model for treatment of diabetic dyslipidemia with peroxisome proliferator activated receptor alpha selective agonists

Pei-Ran Wang; Qiu Guo; Marc C. Ippolito; Margaret Wu; Denise P. Milot; John Ventre; Tom Doebber; Samuel D. Wright; Yu-Sheng Chao

Dyslipidemia, a major risk factor for cardiovascular disease, may be directly linked to diabetic hyperglycemia and insulin resistance. An appropriate dyslipidemic animal model that has diabetes would provide an important tool for research on the treatment of diabetic dyslipidemia. Ten days of high fat feeding in golden Syrian hamsters resulted in a significant increase in insulin resistance and baseline serum lipid levels accompanied by a pronounced dyslipidemia. Thirteen days of treatment with fenofibrate, a peroxisome proliferator-activated receptor alpha (PPARalpha) selective agonist, produced a dose-dependent decrease in serum lipid levels. The pattern observed was characterized by lowered very-low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) and raised high-density lipoprotein (HDL) cholesterol in a fashion similar to that seen in man. Diabetic conditions were also significantly improved by fenofibrate with a normalization of impaired glucose tolerance and an improvement of insulin sensitivity during an oral glucose tolerance test. These data suggest that fenofibrate may correct not only the dyslipidemia but also the insulin resistance caused by a high fat diet, and the high fat fed hamster may be a good animal model for research on the treatment of diabetic dyslipidemia with PPARalpha selective agonists.


Biochimica et Biophysica Acta | 2001

Regulation of lipid metabolism and gene expression by fenofibrate in hamsters

Qiu Guo; Pei-Ran Wang; Denise P. Milot; Marc C. Ippolito; Melba Hernandez; Charlotte Burton; Samuel D. Wright; Yu-Sheng Chao

Fenofibrate is a potent hypolipidemic agent that lowers plasma lipid levels and may thus decrease the incidence of atherosclerosis. Here we investigated the molecular mechanism of fenofibrates hypolipidemic action by characterizing its in vivo effects on the expression of mRNAs and the activities of pivotal enzymes in cholesterol and triglyceride metabolism in the hamster. Treatment of hamsters with fenofibrate led to a dose-dependent reduction in serum cholesterol concentrations. Studies on the incorporation of [(14)C]acetate and [(14)C]mevalonate into cholesterol suggested that this effect occurs primarily through inhibition of cholesterol biosynthesis at steps prior to mevalonate. Fenofibrate decreased levels of hepatic enzyme activities and mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase and HMG CoA reductase. A potential mechanism for transcriptional regulation of these enzymes is via SREBP-2 that we found to be suppressed 2-fold by fenofibrate. Fenofibrate also lowered circulatory triglyceride levels. In keeping with the effect, we observed strong suppression of fatty acid synthase, acetyl-CoA carboxylase and apolipoprotein C-III mRNA and stimulation of lipoprotein lipase and acyl-CoA oxidase mRNA in the liver of fenofibrate-treated hamsters. These observations suggest that the effect of fenofibrate on triglyceride metabolism is likely to be a result of both decreased fatty acid synthesis and increased lipoprotein lipase and acyl-CoA oxidase gene expression in the liver. Surprisingly, alterations in lipoprotein lipase, acyl-CoA oxidase, acetyl-CoA carboxylase, and apolipoprotein C-III could not be observed in hamster hepatocytes incubated with fenofibric acid in vitro. These observations raise the possibility that changes in these genes may be secondary to the metabolic alterations occurring in animals but not in cultured cells and thus that the effect of fenofibrate on these genes may be indirect.


Journal of Medicinal Chemistry | 2011

Biphenyl-Substituted Oxazolidinones as Cholesteryl Ester Transfer Protein Inhibitors: Modifications of the Oxazolidinone Ring Leading to the Discovery of Anacetrapib

Cameron J. Smith; Amjad Ali; Milton L. Hammond; Hong Li; Zhijian Lu; Joann B. Napolitano; Gayle E. Taylor; Christopher F. Thompson; Matt S. Anderson; Ying Chen; Suzanne S. Eveland; Qiu Guo; Sheryl A. Hyland; Denise P. Milot; Carl P. Sparrow; Samuel D. Wright; Anne-Marie Cumiskey; Melanie Latham; Laurence B. Peterson; Ray Rosa; James V. Pivnichny; Xinchun Tong; Suoyu S. Xu; Peter J. Sinclair

The development of the structure-activity studies leading to the discovery of anacetrapib is described. These studies focused on varying the substitution of the oxazolidinone ring of the 5-aryloxazolidinone system. Specifically, it was found that substitution of the 4-position with a methyl group with the cis-stereochemistry relative to the 5-aryl group afforded compounds with increased cholesteryl ester transfer protein (CETP) inhibition potency and a robust in vivo effect on increasing HDL-C levels in transgenic mice expressing cynomolgus monkey CETP.


Bioorganic & Medicinal Chemistry Letters | 2010

2-Arylbenzoxazoles as CETP inhibitors: Substitution of the benzoxazole moiety

Cameron J. Smith; Amjad Ali; Liya Chen; Milton L. Hammond; Matt S. Anderson; Ying Chen; Suzanne S. Eveland; Qiu Guo; Sheryl A. Hyland; Denise P. Milot; Carl P. Sparrow; Samuel D. Wright; Peter J. Sinclair

A series of 2-arylbenzoxazole inhibitors of the cholesterol ester transfer protein (CETP) is described. Structure-activity studies focused on variation of the substitution of the benzoxazole moiety. Substitution at the 5- and 7-positions of the benzoxazole moiety was found to be beneficial for CETP inhibition. Compound 47 was found to be the most potent inhibitor in this series and inhibited CETP with an IC(50) of 28nM.


Bioorganic & Medicinal Chemistry Letters | 2011

2-Arylbenzoxazoles as CETP inhibitors: raising HDL-C in cynoCETP transgenic mice.

Florida Kallashi; Dooseop Kim; Jennifer E. Kowalchick; You Jung Park; Julianne A. Hunt; Amjad Ali; Cameron J. Smith; Milton L. Hammond; James V. Pivnichny; Xinchun Tong; Suoyu S. Xu; Matt S. Anderson; Ying Chen; Suzanne S. Eveland; Qiu Guo; Sheryl A. Hyland; Denise P. Milot; Anne-Marie Cumiskey; Melanie Latham; Laurence B. Peterson; Ray Rosa; Carl P. Sparrow; Samuel D. Wright; Peter J. Sinclair

We describe structure-activity studies leading to the discovery of 2-arylbenzoxazole 3, the first in a series to raise serum high-density lipoprotein cholesterol levels in transgenic mice. Replacement of the 4-piperidinyloxy moiety with piperazinyl provided a more synthetically tractable lead, which upon optimization resulted in compound 4, an excellent inhibitor of cholesteryl ester transfer protein function with good pharmacokinetic properties and in vivo efficacy.


Bioorganic & Medicinal Chemistry Letters | 2010

2-Arylbenzoxazoles as CETP inhibitors: Substitution and modification of the α-alkoxyamide moiety

Julianne A. Hunt; Silvia Gonzalez; Florida Kallashi; Milton L. Hammond; James V. Pivnichny; Xinchun Tong; Suoyu S. Xu; Matt S. Anderson; Ying Chen; Suzanne S. Eveland; Qiu Guo; Sheryl A. Hyland; Denise P. Milot; Carl P. Sparrow; Samuel D. Wright; Peter J. Sinclair

The development of a series of 2-arylbenzoxazole alpha-alkoxyamide and beta-alkoxyamine inhibitors of cholesteryl ester transfer protein (CETP) is described. Highly fluorinated alpha-alkoxyamides proved to be potent inhibitors of CETP in vitro, and the highly fluorinated 2-arylbenzoxazole beta-alkoxyamine 4 showed a desirable combination of in vitro potency (IC(50)=151 nM) and oral bioavailability in the mouse.


Bioorganic & Medicinal Chemistry Letters | 2010

Design of a novel class of biphenyl CETP inhibitors

Zhijian Lu; Joann B. Napolitano; Ashleigh B. Theberge; Amjad Ali; Milton L. Hammond; Eugene Tan; Xinchun Tong; Suoyu S. Xu; Melanie Latham; Laurence B. Peterson; Matt S. Anderson; Suzanne S. Eveland; Qiu Guo; Sheryl A. Hyland; Denise P. Milot; Ying Chen; Carl P. Sparrow; Samuel D. Wright; Peter J. Sinclair

A new class of CETP inhibitors was designed and prepared. These compounds are potent both in vitro and in vivo. The most active compound (12d) has shown an ability to raise HDL significantly in transgenic mouse PD model.


Bioorganic & Medicinal Chemistry Letters | 2011

2-(4-carbonylphenyl)benzoxazole inhibitors of CETP: scaffold design and advancement in HDLc-raising efficacy.

Ramzi F. Sweis; Julianne A. Hunt; Florida Kallashi; Milton L. Hammond; Ying Chen; Suzanne S. Eveland; Qiu Guo; Sheryl A. Hyland; Denise P. Milot; Anne-Marie Cumiskey; Melanie Latham; Ray Rosa; Larry Peterson; Carl P. Sparrow; Samuel D. Wright; Matt S. Anderson; Peter J. Sinclair

The development of 2-phenylbenzoxazoles as inhibitors of cholesteryl ester transfer protein (CETP) is described. Initial efforts aimed at engineering replacements for the aniline substructures in the benchmark molecule. Reversing the connectivity of the central aniline lead to a new class of 2-(4-carbonylphenyl)benzoxazoles. Structure-activity studies at the C-7 and terminal pyridine ring allowed for the optimization of potency and HDLc-raising efficacy in this new class of inhibitors. These efforts lead to the discovery of benzoxazole 11v, which raised HDLc by 24 mg/dl in our transgenic mouse PD model.


Biochimica et Biophysica Acta | 2002

Protein-disulfide isomerase is a component of an NBD-cholesterol monomerizing protein complex from hamster small intestine

Tian-Quan Cai; Qiu Guo; Birming Wong; Denise P. Milot; Liwen Zhang; Samuel D. Wright

A rapid in vitro assay was developed for monitoring protein-mediated cholesterol monomerization from bile acid aggregates. This assay uses a fluorescent cholesterol analog, 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3 beta-ol (NBD-cholesterol), which was shown to be absorbed by hamster in a fashion similar to cholesterol. The fluorescence of aggregates of NBD-cholesterol was strongly quenched in 2.5 mM of taurocholic acid. Addition of proteins from enterocytes of hamster small intestine led to a time- and dose-dependent dequenching of NBD-cholesterol fluorescence. Comparable dequenching can be detected with SDS and appears to involve monomerization of the NBD-cholesterol. Purification of enterocyte extract by sequential chromatography revealed an approximately 140-kDa protein complex (p140) able to mediate the monomerization of NBD-cholesterol. Each p140 complex mediated monomerization of 2.7 NBD-cholesterol molecules. The p140 complex appeared to be formed by dimerization of two approximately 58-kDa molecules since SDS-PAGE revealed a single dominant band at 58 kDa (p58). Protein sequence analysis suggested that p58 is protein-disulfide isomerase (PDI), and this conclusion was confirmed by cloning of hamster PDI, and detection of PDI enzyme activity in the purified fraction. Additional studies with either pure PDI or lysates of cells transfected with hamster PDI showed that PDI by itself was not sufficient for monomerizing cholesterol. Further, despite a similar mobility on SDS-PAGE (approximately 58 kDa), the p140 complex appeared approximately 45-kDa larger than pure PDI (approximately 95 kDa) when analyzed by a gel-filtration chromatography. The p140 complex may thus contain an unidentified molecule(s) in addition to PDI that may contribute importantly to cholesterol monomerization.

Collaboration


Dive into the Denise P. Milot's collaboration.

Researchain Logo
Decentralizing Knowledge