Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denise R. Carvalho-Silva is active.

Publication


Featured researches published by Denise R. Carvalho-Silva.


Science | 2012

A Systematic Survey of Loss-of-Function Variants in Human Protein-Coding Genes

Daniel G. MacArthur; Suganthi Balasubramanian; Adam Frankish; Ni Huang; James A. Morris; Klaudia Walter; Luke Jostins; Lukas Habegger; Joseph K. Pickrell; Stephen B. Montgomery; Cornelis A. Albers; Zhengdong D. Zhang; Donald F. Conrad; Gerton Lunter; Hancheng Zheng; Qasim Ayub; Mark A. DePristo; Eric Banks; Min Hu; Robert E. Handsaker; Jeffrey A. Rosenfeld; Menachem Fromer; Mike Jin; Xinmeng Jasmine Mu; Ekta Khurana; Kai Ye; Mike Kay; Gary Saunders; Marie-Marthe Suner; Toby Hunt

Defective Gene Detective Identifying genes that give rise to diseases is one of the major goals of sequencing human genomes. However, putative loss-of-function genes, which are often some of the first identified targets of genome and exome sequencing, have often turned out to be sequencing errors rather than true genetic variants. In order to identify the true scope of loss-of-function genes within the human genome, MacArthur et al. (p. 823; see the Perspective by Quintana-Murci) extensively validated the genomes from the 1000 Genomes Project, as well as an additional European individual, and found that the average person has about 100 true loss-of-function alleles of which approximately 20 have two copies within an individual. Because many known disease-causing genes were identified in “normal” individuals, the process of clinical sequencing needs to reassess how to identify likely causative alleles. Validation of predicted nonfunctional alleles in the human genome affects the medical interpretation of genomic analyses. Genome-sequencing studies indicate that all humans carry many genetic variants predicted to cause loss of function (LoF) of protein-coding genes, suggesting unexpected redundancy in the human genome. Here we apply stringent filters to 2951 putative LoF variants obtained from 185 human genomes to determine their true prevalence and properties. We estimate that human genomes typically contain ~100 genuine LoF variants with ~20 genes completely inactivated. We identify rare and likely deleterious LoF alleles, including 26 known and 21 predicted severe disease–causing variants, as well as common LoF variants in nonessential genes. We describe functional and evolutionary differences between LoF-tolerant and recessive disease genes and a method for using these differences to prioritize candidate genes found in clinical sequencing studies.


American Journal of Human Genetics | 2001

The Phylogeography of Brazilian Y-Chromosome Lineages

Denise R. Carvalho-Silva; Fabrício R. Santos; Jorge Rocha; Sérgio D.J. Pena

We examined DNA polymorphisms in the nonrecombining portion of the Y-chromosome to investigate the contribution of distinct patrilineages to the present-day white Brazilian population. Twelve unique-event polymorphisms were typed in 200 unrelated males from four geographical regions of Brazil and in 93 Portuguese males. In our Brazilian sample, the vast majority of Y-chromosomes proved to be of European origin. Indeed, there were no significant differences when the haplogroup frequencies in Brazil and Portugal were compared by means of an exact test of population differentiation. Y-chromosome typing was quite sensitive in the detection of regional immigration events. Distinct footprints of Italian immigration to southern Brazil, migration of Moroccan Jews to the Amazon region, and possible relics of the 17th-century Dutch invasion of northeast Brazil could be seen in the data. In sharp contrast with our mtDNA data in white Brazilians, which showed that > or =60% of the matrilineages were Amerindian or African, only 2.5% of the Y-chromosome lineages were from sub-Saharan Africa, and none were Amerindian. Together, these results configure a picture of strong directional mating between European males and Amerindian and African females, which agrees with the known history of the peopling of Brazil since 1500.


Nucleic Acids Research | 2016

Ensembl Genomes 2016: more genomes, more complexity

Paul J. Kersey; James E. Allen; Irina M. Armean; Sanjay Boddu; Bruce J. Bolt; Denise R. Carvalho-Silva; Mikkel Christensen; Paul Davis; Lee J. Falin; Christoph Grabmueller; Jay Humphrey; Arnaud Kerhornou; Julia Khobova; Naveen K. Aranganathan; Nicholas Langridge; Ernesto Lowy; Mark D. McDowall; Uma Maheswari; Michael Nuhn; Chuang Kee Ong; Bert Overduin; Michael Paulini; Helder Pedro; Emily Perry; Giulietta Spudich; Electra Tapanari; Brandon Walts; Gareth Williams; Marcela Tello–Ruiz; Joshua C. Stein

Ensembl Genomes (http://www.ensemblgenomes.org) is an integrating resource for genome-scale data from non-vertebrate species, complementing the resources for vertebrate genomics developed in the context of the Ensembl project (http://www.ensembl.org). Together, the two resources provide a consistent set of programmatic and interactive interfaces to a rich range of data including reference sequence, gene models, transcriptional data, genetic variation and comparative analysis. This paper provides an update to the previous publications about the resource, with a focus on recent developments. These include the development of new analyses and views to represent polyploid genomes (of which bread wheat is the primary exemplar); and the continued up-scaling of the resource, which now includes over 23 000 bacterial genomes, 400 fungal genomes and 100 protist genomes, in addition to 55 genomes from invertebrate metazoa and 39 genomes from plants. This dramatic increase in the number of included genomes is one part of a broader effort to automate the integration of archival data (genome sequence, but also associated RNA sequence data and variant calls) within the context of reference genomes and make it available through the Ensembl user interfaces.


American Journal of Human Genetics | 2001

Genetic Differentiation in South Amerindians Is Related to Environmental and Cultural Diversity: Evidence from the Y Chromosome

Eduardo Tarazona-Santos; Denise R. Carvalho-Silva; Davide Pettener; Donata Luiselli; Gian Franco De Stefano; Cristina Martínez Labarga; Olga Rickards; Chris Tyler-Smith; Sérgio D.J. Pena; Fabrício R. Santos

The geographic structure of Y-chromosome variability has been analyzed in native populations of South America, through use of the high-frequency Native American haplogroup defined by the DYS199-T allele and six Y-chromosome-linked microsatellites (DYS19, DYS389A, DYS389B, DYS390, DYS391, and DYS393), analyzed in 236 individuals. The following pattern of within- and among-population variability emerges from the analysis of microsatellite data: (1) the Andean populations exhibit significantly higher levels of within-population variability than do the eastern populations of South America; (2) the spatial-autocorrelation analysis suggests a significant geographic structure of Y-chromosome genetic variability in South America, although a typical evolutionary pattern could not be categorically identified; and (3) genetic-distance analyses and the analysis of molecular variance suggest greater homogeneity between Andean populations than between non-Andean ones. On the basis of these results, we propose a model for the evolution of the male lineages of South Amerindians that involves differential patterns of genetic drift and gene flow. In the western part of the continent, which is associated with the Andean area, populations have relatively large effective sizes and gene-flow levels among them, which has created a trend toward homogenization of the gene pool. On the other hand, eastern populations-settled in the Amazonian region, the central Brazilian plateau, and the Chaco region-have exhibited higher rates of genetic drift and lower levels of gene flow, with a resulting trend toward genetic differentiation. This model is consistent with the linguistic and cultural diversity of South Amerindians, the environmental heterogeneity of the continent, and the available paleoecological data.


BMC Genomics | 2013

Structural and functional annotation of the porcine immunome

Harry Dawson; Jane Loveland; Géraldine Pascal; James Gilbert; Hirohide Uenishi; Katherine Mann; Yongming Sang; Jie Zhang; Denise R. Carvalho-Silva; Toby Hunt; Matthew Hardy; Zhi-Liang Hu; Shuhong Zhao; Anna Anselmo; Hiroki Shinkai; Celine Chen; Bouabid Badaoui; Daniel Berman; Clara Amid; Mike Kay; David Lloyd; Catherine Snow; Takeya Morozumi; Ryan Pei-Yen Cheng; Megan Bystrom; Ronan Kapetanovic; John C. Schwartz; Ranjit Singh Kataria; Matthew Astley; Eric Fritz

BackgroundThe domestic pig is known as an excellent model for human immunology and the two species share many pathogens. Susceptibility to infectious disease is one of the major constraints on swine performance, yet the structure and function of genes comprising the pig immunome are not well-characterized. The completion of the pig genome provides the opportunity to annotate the pig immunome, and compare and contrast pig and human immune systems.ResultsThe Immune Response Annotation Group (IRAG) used computational curation and manual annotation of the swine genome assembly 10.2 (Sscrofa10.2) to refine the currently available automated annotation of 1,369 immunity-related genes through sequence-based comparison to genes in other species. Within these genes, we annotated 3,472 transcripts. Annotation provided evidence for gene expansions in several immune response families, and identified artiodactyl-specific expansions in the cathelicidin and type 1 Interferon families. We found gene duplications for 18 genes, including 13 immune response genes and five non-immune response genes discovered in the annotation process. Manual annotation provided evidence for many new alternative splice variants and 8 gene duplications. Over 1,100 transcripts without porcine sequence evidence were detected using cross-species annotation. We used a functional approach to discover and accurately annotate porcine immune response genes. A co-expression clustering analysis of transcriptomic data from selected experimental infections or immune stimulations of blood, macrophages or lymph nodes identified a large cluster of genes that exhibited a correlated positive response upon infection across multiple pathogens or immune stimuli. Interestingly, this gene cluster (cluster 4) is enriched for known general human immune response genes, yet contains many un-annotated porcine genes. A phylogenetic analysis of the encoded proteins of cluster 4 genes showed that 15% exhibited an accelerated evolution as compared to 4.1% across the entire genome.ConclusionsThis extensive annotation dramatically extends the genome-based knowledge of the molecular genetics and structure of a major portion of the porcine immunome. Our complementary functional approach using co-expression during immune response has provided new putative immune response annotation for over 500 porcine genes. Our phylogenetic analysis of this core immunome cluster confirms rapid evolutionary change in this set of genes, and that, as in other species, such genes are important components of the pig’s adaptation to pathogen challenge over evolutionary time. These comprehensive and integrated analyses increase the value of the porcine genome sequence and provide important tools for global analyses and data-mining of the porcine immune response.


Chromosome Research | 2005

Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): Implications for mammalian sex chromosome evolution

Paul D. Waters; Margaret L. Delbridge; Janine E. Deakin; Nisrine El-Mogharbel; Patrick J Kirby; Denise R. Carvalho-Silva; Jennifer A. Marshall Graves

Mammalian sex chromosomes evolved from an ancient autosomal pair. Mapping of human X- and Y-borne genes in distantly related mammals and non-mammalian vertebrates has proved valuable to help deduce the evolution of this unique part of the genome. The platypus, a monotreme mammal distantly related to eutherians and marsupials, has an extraordinary sex chromosome system comprising five X and five Y chromosomes that form a translocation chain at male meiosis. The largest X chromosome (X1), which lies at one end of the chain, has considerable homology to the human X. Using comparative mapping and the emerging chicken database, we demonstrate that part of the therian X chromosome, previously thought to be conserved across all mammals, was lost from the platypus X1 to an autosome. This region included genes flanking the XIST locus, and also genes with Y-linked homologues that are important to male reproduction in therians. Since these genes lie on the X in marsupials and eutherians, and also on the homologous region of chicken chromosome 4, this represents a loss from the monotreme X rather than an additional evolutionary stratum of the human X.


Nucleic Acids Research | 2017

Open Targets: a platform for therapeutic target identification and validation

Gautier Koscielny; Peter An; Denise R. Carvalho-Silva; Jennifer A. Cham; Luca Fumis; Rippa Gasparyan; Samiul Hasan; Nikiforos Karamanis; Michael Maguire; Eliseo Papa; Andrea Pierleoni; Miguel Pignatelli; Theo Platt; Francis Rowland; Priyanka Wankar; A. Patrícia Bento; Tony Burdett; Antonio Fabregat; Simon A. Forbes; Anna Gaulton; Cristina Yenyxe Gonzalez; Henning Hermjakob; Anne Hersey; Steven Jupe; Şenay Kafkas; Maria Keays; Catherine Leroy; Francisco-Javier Lopez; María Paula Magariños; James Malone

We have designed and developed a data integration and visualization platform that provides evidence about the association of known and potential drug targets with diseases. The platform is designed to support identification and prioritization of biological targets for follow-up. Each drug target is linked to a disease using integrated genome-wide data from a broad range of data sources. The platform provides either a target-centric workflow to identify diseases that may be associated with a specific target, or a disease-centric workflow to identify targets that may be associated with a specific disease. Users can easily transition between these target- and disease-centric workflows. The Open Targets Validation Platform is accessible at https://www.targetvalidation.org.


Human Mutation | 2008

Dynamic nature of the proximal AZFc region of the human Y chromosome: multiple independent deletion and duplication events revealed by microsatellite analysis.

Patricia Balaresque; Georgina R. Bowden; Emma J. Parkin; Ghada A. Omran; Evelyne Heyer; Lluis Quintana-Murci; Lutz Roewer; Mark Stoneking; Ivan Nasidze; Denise R. Carvalho-Silva; Chris Tyler-Smith; Peter de Knijff; Mark A. Jobling

The human Y chromosome shows frequent structural variants, some of which are selectively neutral, while others cause impaired fertility due to the loss of spermatogenic genes. The large‐scale use of multiple Y‐chromosomal microsatellites in forensic and population genetic studies can reveal such variants, through the absence or duplication of specific markers in haplotypes. We describe Y chromosomes in apparently normal males carrying null and duplicated alleles at the microsatellite DYS448, which lies in the proximal part of the azoospermia factor c (AZFc) region, important in spermatogenesis, and made up of “ampliconic” repeats that act as substrates for nonallelic homologous recombination (NAHR). Physical mapping in 26 DYS448 deletion chromosomes reveals that only three cases belong to a previously described class, representing independent occurrences of an∼1.5‐Mb deletion mediated by recombination between the b1 and b3 repeat units. The remainder belong to five novel classes; none appears to be mediated through homologous recombination, and all remove some genes, but are likely to be compatible with normal fertility. A combination of deletion analysis with binary‐marker and microsatellite haplotyping shows that the 26 deletions represent nine independent events. Nine DYS448 duplication chromosomes can be explained by four independent events. Some lineages have risen to high frequency in particular populations, in particular a deletion within haplogroup (hg) C*(xC3a,C3c) found in 18 Asian males. The nonrandom phylogenetic distribution of duplication and deletion events suggests possible structural predisposition to such mutations in hgs C and G. Hum Mutat 0, 1–10, 2008.


Human Heredity | 2008

Maternal Footprints of Southeast Asians in North India

Kumarasamy Thangaraj; Gyaneshwer Chaubey; Toomas Kivisild; Deepa Selvi Rani; Vijay Kumar Singh; Thanseem Ismail; Denise R. Carvalho-Silva; Mait Metspalu; L. V. K. S. Bhaskar; Alla G. Reddy; Sarat Chandra; Veena Pande; B. Prathap Naidu; Niharika Adarsh; Abhilasha Verma; Inaganti Amara Jyothi; Chandana Basu Mallick; Nidhi Shrivastava; Ragala Devasena; Babita Kumari; Amit Kumar Singh; Shailendra Kumar Dhar Dwivedi; Shefali Singh; Geeta Rao; Pranav Gupta; Vartika Sonvane; Kavita Kumari; Afsar Basha; K.R. Bhargavi; Albert Lalremruata

We have analyzed 7,137 samples from 125 different caste, tribal and religious groups of India and 99 samples from three populations of Nepal for the length variation in the COII/tRNALys region of mtDNA. Samples showing length variation were subjected to detailed phylogenetic analysis based on HVS-I and informative coding region sequence variation. The overall frequencies of the 9-bp deletion and insertion variants in South Asia were 1.9 and 0.6%, respectively. We have also defined a novel deep-rooting haplogroup M43 and identified the rare haplogroup H14 in Indian populations carrying the 9-bp deletion by complete mtDNA sequencing. Moreover, we redefined haplogroup M6 and dissected it into two well-defined subclades. The presence of haplogroups F1 and B5a in Uttar Pradesh suggests minor maternal contribution from Southeast Asia to Northern India. The occurrence of haplogroup F1 in the Nepalese sample implies that Nepal might have served as a bridge for the flow of eastern lineages to India. The presence of R6 in the Nepalese, on the other hand, suggests that the gene flow between India and Nepal has been reciprocal.


Journal of Molecular Evolution | 1999

Divergent Human Y-Chromosome Microsatellite Evolution Rates

Denise R. Carvalho-Silva; Fabrício R. Santos; Mara H. Hutz; Francisco M. Salzano; Sérgio D.J. Pena

Abstract: In this work, we analyze several characteristics influencing the low variability of the microsatellite DYS19 in the major founder Amerindian Y chromosome lineage containing the point mutation DYS199-T. Variation of DYS19 was compared with that of five other Y-linked tetranucleotide repeat loci (DYS389A, DYS389B, DYS390, DYS391, and DYS393) in the DYS199-T lineage. All the other microsatellites showed significantly higher levels of variability than DYS19 as measured by gene diversity and repeat number variance. Moreover, we had previously shown that DYS19 had high diversity in Brazilians and in several other populations worldwide. Thus, the slow DYS19 evolution in the DYS199-T lineage seems to be both locus and allele specific. To understand the slow DYS19 evolutionary rate, the microsatellite loci were compared according to their mapping on the Y chromosome and also on the basis of structural aspects such as the base composition of the repeat motif and flanking regions and the degree of perfection and size (repeat number) of the variable blocks. The only observed difference that might be related to the low DYS19 variability is its small average number of repeats, a value expected to be closer to the founder DYS19 allele in the DYS199-T lineage. These data were also compared to other derived Y lineages. The Tat-C lineage displayed a lower DYS19 variability correlated to a small average repeat number, while in the DYS234-G lineage, a high DYS19 variability was found associated to a larger average repeat number. This approach reveals that evolution of Y microsatellites in lineages defined by slowly evolving markers, such as point mutations, can be greatly influenced by the size (number of repeats of the variable block) of the founder allele in each microsatellite locus. Thus lineage-dating methods using microsatellite variation should be practiced with great care.

Collaboration


Dive into the Denise R. Carvalho-Silva's collaboration.

Top Co-Authors

Avatar

Chris Tyler-Smith

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Sérgio D.J. Pena

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Fabrício R. Santos

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter de Knijff

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Toby Hunt

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Thirsa Kraaijenbrink

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

James Gilbert

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Jane Loveland

Wellcome Trust Sanger Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge