Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deniz Ufuk Erbulut is active.

Publication


Featured researches published by Deniz Ufuk Erbulut.


Journal of Neurosurgery | 2015

Determination of the biomechanical effect of an interspinous process device on implanted and adjacent lumbar spinal segments using a hybrid testing protocol: a finite-element study

Deniz Ufuk Erbulut; Iman Zafarparandeh; Chaudhry R. Hassan; Ismail Lazoglu; Ali Fahir Ozer

OBJECT The authors evaluated the biomechanical effects of an interspinous process (ISP) device on kinematics and load sharing at the implanted and adjacent segments. METHODS A 3D finite-element (FE) model of the lumbar spine (L1-5) was developed and validated through comparison with published in vitro study data. Specifically, validation was achieved by a flexible (load-control) approach in 3 main planes under a pure moment of 10 Nm and a compressive follower load of 400 N. The ISP device was inserted between the L-3 and L-4 processes. Intact and implanted cases were simulated using the hybrid protocol in all motion directions. The resultant motion, facet load, and intradiscal pressure after implantation were investigated at the index and adjacent levels. In addition, stress at the bone-implant interface was predicted. RESULTS The hybrid approach, shown to be appropriate for adjacent-level investigations, predicted that the ISP device would decrease the range of motion, facet load, and intradiscal pressure at the index level relative to the corresponding values for the intact spine in extension. Specifically, the intradiscal pressure induced after implantation at adjacent segments increased by 39.7% and by 6.6% at L2-3 and L4-5, respectively. Similarly, facet loads at adjacent segments after implantation increased up to 60% relative to the loads in the intact case. Further, the stress at the bone-implant interface increased significantly. The influence of the ISP device on load sharing parameters in motion directions other than extension was negligible. CONCLUSIONS Although ISP devices apply a distraction force on the processes and prevent further extension of the index segment, their implantation may cause changes in biomechanical parameters such as facet load, intradiscal pressure, and range of motion at adjacent levels in extension.


Medical Engineering & Physics | 2014

Application of an asymmetric finite element model of the C2-T1 cervical spine for evaluating the role of soft tissues in stability.

Deniz Ufuk Erbulut; Iman Zafarparandeh; Ismail Lazoglu; Ali Fahir Ozer

Different finite element models of the cervical spine have been suggested for evaluating the roles of ligaments, facet joints, and disks in the stability of cervical spine under sagittal moments. However, no comprehensive study on the response of the full cervical spine that has used a detailed finite element (FE) model (C2-T1) that considers the asymmetry about the mid-sagittal plane has been reported. The aims of this study were to consider asymmetry in a FE model of the full cervical spine and to investigate the influences of ligaments, facet joints, and disk nucleus on the stability of the asymmetric model during flexion and extension. The model was validated against various published in vitro studies and FE studies for the three main loading planes. Next, the C4-C5 level was modified to simulate different cases to investigate the role of the soft tissues in segmental stability. The FE model predicted that excluding the interspinous ligament (ISL) from the index level would cause excessive instability during flexion and that excluding the posterior longitudinal ligament (PLL) or the ligamentum flavum (LF) would not affect segmental rotation. During extension, motion increased when the facet joints were excluded. The model without disk nucleus was unstable compared to the intact model at lower loads and exhibited a similar rotation response at higher loads.


Journal of Biomechanical Engineering-transactions of The Asme | 2014

A Computational Biomechanical Investigation of Posterior Dynamic Instrumentation: Combination of Dynamic Rod and Hinged (Dynamic) Screw

Deniz Ufuk Erbulut; Ali Kiapour; Tunc Oktenoglu; Ali Fahir Ozer; Vijay K. Goel

Currently, rigid fixation systems are the gold standard for degenerative disk disease treatment. Dynamic fixation systems have been proposed as alternatives for the treatment of a variety of spinal disorders. These systems address the main drawbacks of traditional rigid fixation systems, such as adjacent segment degeneration and instrumentation failure. Pedicle-screw-based dynamic stabilization (PDS) is one type of these alternative systems. The aim of this study was to simulate the biomechanical effect of a novel posterior dynamic stabilization system, which is comprised of dynamic (hinged) screws interconnected with a coiled, spring-based dynamic rod (DSDR), and compare it to semirigid (DSRR and RSRR) and rigid stabilization (RSRR) systems. A validated finite element (FE) model of L1-S1 was used to quantify the biomechanical parameters of the spine, such as range of motion, intradiskal pressure, stresses and facet loads after single-level instrumentation with different posterior stabilization systems. The results obtained from in vitro experimental intact and instrumented spines were used to validate the FE model, and the validated model was then used to compare the biomechanical effects of different fixation and stabilization constructs with intact under a hybrid loading protocol. The segmental motion at L4-L5 increased by 9.5% and 16.3% in flexion and left rotation, respectively, in DSDR with respect to the intact spine, whereas it was reduced by 6.4% and 10.9% in extension and left-bending loads, respectively. After instrumentation-induced intradiskal pressure at adjacent segments, L3-L4 and L5-S1 became less than the intact in dynamic rod constructs (DSDR and RSDR) except in the RSDR model in extension where the motion was higher than intact by 9.7% at L3-L4 and 11.3% at L5-S1. The facet loads were insignificant, not exceeding 12N in any of the instrumented cases in flexion. In extension, the facet load in DSDR case was similar to that in intact spine. The dynamic rod constructions (DSDR and RSDR) led to a lesser peak stress at screws compared with rigid rod constructions (DSRR and RSRR) in all loading cases. A dynamic construct consisting of a dynamic rod and a dynamic screw did protect the adjacent level from excessive motion.


Advances in orthopedics | 2013

Biomechanics of Posterior Dynamic Stabilization Systems

Deniz Ufuk Erbulut; I. Zafarparandeh; Ali Fahir Ozer; Vijay K. Goel

Spinal rigid instrumentations have been used to fuse and stabilize spinal segments as a surgical treatment for various spinal disorders to date. This technology provides immediate stability after surgery until the natural fusion mass develops. At present, rigid fixation is the current gold standard in surgical treatment of chronic back pain spinal disorders. However, such systems have several drawbacks such as higher mechanical stress on the adjacent segment, leading to long-term degenerative changes and hypermobility that often necessitate additional fusion surgery. Dynamic stabilization systems have been suggested to address adjacent segment degeneration, which is considered to be a fusion-associated phenomenon. Dynamic stabilization systems are designed to preserve segmental stability, to keep the treated segment mobile, and to reduce or eliminate degenerative effects on adjacent segments. This paper aimed to describe the biomechanical aspect of dynamic stabilization systems as an alternative treatment to fusion for certain patients.


Turkish Neurosurgery | 2013

Development of a finite element model of the human cervical spine.

Iman Zafarparandeh; Deniz Ufuk Erbulut; Ismail Lazoglu; Ali Fahir Ozer

The finite element model has been used as an effective tool in human spine biomechanics. Biomechanical finite element models have provided basic insights into the workings of the cervical spine system. Advancements in numerical methods during the last decade have enabled researchers to propose more accurate models of the cervical spine. The new finite element model of the cervical spine considers the accurate representation of each tissue regarding the geometry and material. The aim of this paper is to address the new advancements in the finite element model of the human cervical spine. The procedures for creating a finite element model are introduced, including geometric construction, material-property assignment, boundary conditions and validation. The most recent and published finite element models of the cervical spine are reviewed.


Computer Methods in Biomechanics and Biomedical Engineering | 2015

Pedicle screw-based posterior dynamic stabilisation of the lumbar spine: in vitro cadaver investigation and a finite element study

Tunc Oktenoglu; Deniz Ufuk Erbulut; Ata M. Kiapour; Ali Fahir Ozer; Ismail Lazoglu; Tuncay Kaner; Mehdi Sasani; Vijay K. Goel

Pedicle screw-based dynamic constructs either benefit from a dynamic (flexible) interconnecting rod or a dynamic (hinged) screw. Both types of systems have been reported in the literature. However, reports where the dynamic system is composed of two dynamic components, i.e. a dynamic (hinged) screw and a dynamic rod, are sparse. In this study, the biomechanical characteristics of a novel pedicle screw-based dynamic stabilisation system were investigated and compared with equivalent rigid and semi-rigid systems using in vitro testing and finite element modelling analysis. All stabilisation systems restored stability after decompression. A significant decrease in the range of motion was observed for the rigid system in all loadings. In the semi-rigid construct the range of motion was significantly less than the intact in extension, lateral bending and axial rotation loadings. There were no significant differences in motion between the intact spine and the spine treated with the dynamic system (P>0.05). The peak stress in screws was decreased when the stabilisation construct was equipped with dynamic rod and/or dynamic screws.


Turkish Neurosurgery | 2014

Biomechanics of neck injuries resulting from rear-end vehicle collisions.

Deniz Ufuk Erbulut

It has been claimed that 85% of the neck injuries caused by car accidents are the result of rear-end collisions. This type of injury is called a whiplash injury, and its mechanisms are not completely understood due to the limited ability to diagnose them using X-ray or MRI. Biomechanical studies including research on injury mechanisms, injury criteria, neck kinematics and injury epidemiology were reviewed to investigate the details of whiplash injuries. Many different injury mechanisms has been studied and identified such as hyperextension of the neck, facet joint impingement, spine column pressure, and muscle strains. Possible injury criterions have been reported as The Neck Injury Criterion (NIC), Nij criterion, IV-NIC criterio, Nkm criterion, NDC criterion.


Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine | 2016

Motion analysis study on sensitivity of finite element model of the cervical spine to geometry

Iman Zafarparandeh; Deniz Ufuk Erbulut; Ali Fahir Ozer

Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2–C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models—main and coupled motions—was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion–extension, right–left lateral bending, and right–left axial rotation, respectively. For flexion–extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment–rotation curve for the cervical spine was properly predicted.


Advances in Mechanical Engineering | 2016

Influence of three-dimensional reconstruction method for building a model of the cervical spine on its biomechanical responses: A finite element analysis study

Iman Zafarparandeh; Deniz Ufuk Erbulut; Ali Fahir Ozer

In some finite element analysis studies of models of sections of the spine, the three-dimensional solid model is built by assuming symmetry about the mid-sagittal plane of the section, whereas in other studies, the model is built from the exact geometry of the section. The influence of the method used to build the solid model on model parameters, in the case of the cervical spine, has not been reported in the literature. This issue is the subject of this study, with the section being C2–C7, the applied loadings being extension, flexion, left lateral bending, and right axial rotation (each of magnitude 1 Nm), and the model parameters determined being rotation, intradiskal pressure, and facet load at each of the segments. When all the parameter results were considered, it was found that, by and large, the influence of solid model construction method used (exact geometry vs assumption of symmetry about the mid-sagittal plane of the section) was marginal. As construction of a symmetric finite element model requires less time and effort, construction of an asymmetric model may be justified in special cases only.


Turkish Neurosurgery | 2015

Comparison of the rigid rod system with modular plate with the finite element analysis in short-segment posterior stabilization in the lower lumbar region.

Yaldiz C; Ozkal B; Güvenç Y; Senturk S; Deniz Ufuk Erbulut; Zafarparandah I; Onur Yaman; Solaroğlu I; Özer F

AIM Many studies are available in the literature on posterior spinal instrumentation, though the use of a rod and a plate is still controversial in the literature. In this study, a finite element analysis of the strength and superiority of modular rigid plate and rod systems, which are used in the lower lumbar region, in comparison with each other was used. MATERIAL AND METHODS A Ti6Al4V (Grade 5) titanium biocompatible alloy anterior plate was used for the lumbar spine fixation device, and a finite element analysis was conducted on the human lumbar spine model. In this study, an intact spine, a rigid system fixed with a rod, and modular plate systems were evaluated at flexion, extension, lateral bending, and axial rotation. RESULTS They did not show statistically significant superiority over one another in terms of limitations in movement during the range of motion exercises and rigidity. CONCLUSION The posterior rigid stabilization system and novel stabilization system do not have a significant superiority over one another. Equivalent results in the limitation of movement and rigidity allow for the use of these systems for short-segment posterior spinal instrumentation with the same indications.

Collaboration


Dive into the Deniz Ufuk Erbulut's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atilla Yilmaz

Mustafa Kemal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge