Dennis Cantre
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dennis Cantre.
BMC Plant Biology | 2015
Els Herremans; Pieter Verboven; Bert Verlinden; Dennis Cantre; Metadel Abera; Martine Wevers; Bart Nicolai
Background3D high-resolution X-ray imaging methods have emerged over the last years for visualising the anatomy of tissue samples without substantial sample preparation. Quantitative analysis of cells and intercellular spaces in these images has, however, been difficult and was largely based on manual image processing. We present here an automated procedure for processing high-resolution X-ray images of parenchyma tissues of apple (Malus × domestica Borkh.) and pear (Pyrus communis L.) as a rapid objective method for characterizing 3D plant tissue anatomy at the level of single cells and intercellular spaces.ResultsWe isolated neighboring cells in 3D images of apple and pear cortex tissues, and constructed a virtual sieve to discard incorrectly segmented cell particles or unseparated clumps of cells. Void networks were stripped down until their essential connectivity features remained. Statistical analysis of structural parameters showed significant differences between genotypes in the void and cell networks that relate to differences in aeration properties of the tissues.ConclusionsA new model for effective oxygen diffusivity of parenchyma tissue is proposed that not only accounts for the tortuosity of interconnected voids, but also for significant diffusion across cells where the void network is not connected. This will significantly aid interpretation and analysis of future tissue aeration studies. The automated image analysis methodology will also support pheno- and genotyping studies where the 3D tissue anatomy plays a role.
Environmental Science & Technology | 2015
Wouter Devarrewaere; Dieter Foqué; Udo Heimbach; Dennis Cantre; Bart Nicolai; David Nuyttens; Pieter Verboven
Crop seeds are often treated with pesticides before planting. Pesticide-laden dust particles can be abraded from the seed coating during planting and expelled into the environment, damaging nontarget organisms. Drift of these dust particles depends on their size, shape and density. In this work, we used X-ray micro-CT to examine the size, shape (sphericity) and porosity of dust particles from treated seeds of various crops. The dust properties quantified in this work were very variable in different crops. This variability may be a result of seed morphology, seed batch, treatment composition, treatment technology, seed cleaning or an interaction of these factors. The intraparticle porosity of seed treatment dust particles varied from 0.02 to 0.51 according to the crop and generally increased with particle size. Calculated settling velocities demonstrated that accounting for particle shape and porosity is important in drift studies. For example, the settling velocity of dust particles with an equivalent diameter of 200 μm may vary between 0.1 and 1.2 m s(-1), depending on their shape and density. Our analysis shows that in a wind velocity of 5 m s(-1), such particles ejected at 1 m height may travel between 4 and 50 m from the source before settling. Although micro-CT is a valuable tool to characterize dust particles, the current image processing methodology limits the number of particles that can be analyzed.
Planta | 2014
Thijs Defraeye; Dominique Derome; Wondwosen Abebe Aregawi; Dennis Cantre; Stefan Hartmann; Eberhard Lehmann; Jan Carmeliet; Frédéric Voisard; Pieter Verboven; Bart Nicolai
AbstractMain conclusionQuantitative neutron imaging is a promising technique to investigate leaf water flow and transpiration in real time and has perspectives towards studies of plant response to environmental conditions and plant water stress. The leaf hydraulic architecture is a key determinant of plant sap transport and plant–atmosphere exchange processes. Non-destructive imaging with neutrons shows large potential for unveiling the complex internal features of the venation network and the transport therein. However, it was only used for two-dimensional imaging without addressing flow dynamics and was still unsuccessful in accurate quantification of the amount of water. Quantitative neutron imaging was used to investigate, for the first time, the water distribution in veins and lamina, the three-dimensional venation architecture and sap flow dynamics in leaves. The latter was visualised using D2O as a contrast liquid. A high dynamic resolution was obtained by using cold neutrons and imaging relied on radiography (2D) as well as tomography (3D). The principle of the technique was shown for detached leaves, but can be applied to in vivo leaves as well. The venation network architecture and the water distribution in the veins and lamina unveiled clear differences between plant species. The leaf water content could be successfully quantified, though still included the contribution of the leaf dry matter. The flow measurements exposed the hierarchical structure of the water transport pathways, and an accurate quantification of the absolute amount of water uptake in the leaf was possible. Particular advantages of neutron imaging, as compared to X-ray imaging, were identified. Quantitative neutron imaging is a promising technique to investigate leaf water flow and transpiration in real time and has perspectives towards studies of plant response to environmental conditions and plant water stress.
Frontiers in Plant Science | 2015
Els Herremans; Pieter Verboven; Maarten Hertog; Dennis Cantre; Mattias van Dael; Thomas De Schryver; Luc Van Hoorebeke; Bart Nicolai
The void network and vascular system are important pathways for the transport of gases, water and solutes in apple fruit (Malus × domestica Borkh). Here we used X-ray micro-tomography at various spatial resolutions to investigate the growth of these transport structures in 3D during fruit development of “Jonagold” apple. The size of the void space and porosity in the cortex tissue increased considerably. In the core tissue, the porosity was consistently lower, and seemed to decrease toward the end of the maturation period. The voids in the core were more narrow and fragmented than the voids in the cortex. Both the void network in the core and in the cortex changed significantly in terms of void morphology. An automated segmentation protocol underestimated the total vasculature length by 9–12% in comparison to manually processed images. Vascular networks increased in length from a total of 5 m at 9 weeks after full bloom, to more than 20 m corresponding to 5 cm of vascular tissue per cubic centimeter of apple tissue. A high degree of branching in both the void network and vascular system and a complex three-dimensional pattern was observed across the whole fruit. The 3D visualizations of the transport structures may be useful for numerical modeling of organ growth and transport processes in fruit.
Bioelectrochemistry | 2016
Katarzyna Dymek; Valentina Panarese; Els Herremans; Dennis Cantre; Rick Schoo; Javier Sastre Toraño; Henriette Schluepmann; Lars Wadsö; Pieter Verboven; Bart Nicolai; Petr Dejmek; Federico Gómez Galindo
The impregnation of leafy vegetables with cryoprotectants using a combination of vacuum impregnation (VI) and pulsed electric fields (PEF) has been proposed by our research group as a method of improving their freezing tolerance and consequently their general quality after thawing. In this study, we have investigated the metabolic consequences of the combination of these unit operations on spinach. The vacuum impregnated spinach leaves showed a drastic decrease in the porosity of the extracellular space. However, at maximum weight gain, randomly located air pockets remained, which may account for oxygen-consuming pathways in the cells being active after VI. The metabolic activity of the impregnated leaves showed a drastic increase that was further enhanced by the application of PEF to the impregnated tissue. Impregnating the leaves with trehalose by VI led to a significant accumulation of trehalose-6-phosphate (T6P), however, this was not further enhanced by PEF. It is suggested that the accumulation of T6P in the leaves may increase metabolic activity, and increase tissue resistance to abiotic stress.
Plant Science | 2016
Moges Ashagrie Retta; Xinyou Yin; Petter E.L. van der Putten; Dennis Cantre; Herman N.C. Berghuijs; Quang Tri Ho; Pieter Verboven; P.C. Struik; Bart Nicolai
The mechanism of photosynthesis in C4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (gbs), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C4 photosynthesis to estimate gbs. The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between gbs and leaf nitrogen content (LNC) while old leaves had lower gbs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (Sb) correlated well with gbs although they were not significantly affected by LNC. As a result, the increase of gbs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on Sb was responsible for differences in gbs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO2 leakage pathway to unravel LNC and age effects further.
Annual Review of Food Science and Technology - (new in 2010) | 2018
Zi Wang; Els Herremans; Siem Janssen; Dennis Cantre; Pieter Verboven; Bart Nicolai
X-ray micro-computed tomography (micro-CT) provides the unique ability to capture intact internal microstructure data without significant preparation of the sample. The fundamentals of micro-CT technology are briefly described along with a short introduction to basic image processing, quantitative analysis, and derivative computational modeling. The applications and limitations of micro-CT in industries such as meat, dairy, postharvest, and bread/confectionary are discussed to serve as a guideline to the plausibility of utilizing the technique for detecting features of interest. Component volume fractions, their respective size/shape distributions, and connectivity, for example, can be utilized for product development, manufacturing process tuning and/or troubleshooting. In addition to determining structure-function relations, micro-CT can be used for foreign material detection to further ensure product quality and safety. In most usage scenarios, micro-CT in its current form is perfectly adequate for determining microstructure in a wide variety of food products. However, in low-contrast and low-stability samples, emphasis is placed on the shortcomings of the current systems to set realistic expectations for the intended users.
Innovative Food Science and Emerging Technologies | 2014
Dennis Cantre; Els Herremans; Pieter Verboven; Jerry Ampofo-Asiama; Bart Nicolai
Postharvest Biology and Technology | 2014
Dennis Cantre; A.R. East; Pieter Verboven; Ximenita I. Trejo Araya; Els Herremans; Bart Nicolai; Thamarath Pranamornkith; Michael Loh; Alistair Mowat; J.A. Heyes
Postharvest Biology and Technology | 2015
Mo Li; Pieter Verboven; Andreas Buchsbaum; Dennis Cantre; Bart Nicolai; J.A. Heyes; Alistair Mowat; A.R. East