Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dennis D. Hickstein is active.

Publication


Featured researches published by Dennis D. Hickstein.


Blood | 2011

Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome

Amy P. Hsu; Elizabeth P. Sampaio; Javed Khan; Katherine R. Calvo; Jacob Lemieux; Smita Y. Patel; David M. Frucht; Donald C. Vinh; Roger D. Auth; Alexandra F. Freeman; Kenneth N. Olivier; Gulbu Uzel; Christa S. Zerbe; Christine Spalding; Stefania Pittaluga; Mark Raffeld; Douglas B. Kuhns; Li Ding; Michelle L. Paulson; Beatriz E. Marciano; Juan Gea-Banacloche; Jordan S. Orange; Jennifer Cuellar-Rodriguez; Dennis D. Hickstein; Steven M. Holland

The syndrome of monocytopenia, B-cell and NK-cell lymphopenia, and mycobacterial, fungal, and viral infections is associated with myelodysplasia, cytogenetic abnormalities, pulmonary alveolar proteinosis, and myeloid leukemias. Both autosomal dominant and sporadic cases occur. We identified 12 distinct mutations in GATA2 affecting 20 patients and relatives with this syndrome, including recurrent missense mutations affecting the zinc finger-2 domain (R398W and T354M), suggesting dominant interference of gene function. Four discrete insertion/deletion mutations leading to frame shifts and premature termination implicate haploinsufficiency as a possible mechanism of action as well. These mutations were found in hematopoietic and somatic tissues, and several were identified in families, indicating germline transmission. Thus, GATA2 joins RUNX1 and CEBPA not only as a familial leukemia gene but also as a cause of a complex congenital immunodeficiency that evolves over decades and combines predisposition to infection and myeloid malignancy.


Blood | 2013

Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation

James N. Kochenderfer; Mark E. Dudley; Robert O. Carpenter; Sadik H. Kassim; Jeremy J. Rose; William G. Telford; Frances T. Hakim; David Halverson; Daniel H. Fowler; Nancy M. Hardy; Anthony R Mato; Dennis D. Hickstein; Juan Gea-Banacloche; Steven Z. Pavletic; Claude Sportes; Irina Maric; Steven A. Feldman; Brenna Hansen; Jennifer Wilder; Bazetta Blacklock-Schuver; Bipulendu Jena; Michael R. Bishop; Ronald E. Gress; Steven A. Rosenberg

New treatments are needed for B-cell malignancies persisting after allogeneic hematopoietic stem cell transplantation (alloHSCT). We conducted a clinical trial of allogeneic T cells genetically modified to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. T cells for genetic modification were obtained from each patients alloHSCT donor. All patients had malignancy that persisted after alloHSCT and standard donor lymphocyte infusions (DLIs). Patients did not receive chemotherapy prior to the CAR T-cell infusions and were not lymphocyte depleted at the time of the infusions. The 10 treated patients received a single infusion of allogeneic anti-CD19-CAR T cells. Three patients had regressions of their malignancies. One patient with chronic lymphocytic leukemia (CLL) obtained an ongoing complete remission after treatment with allogeneic anti-CD19-CAR T cells, another CLL patient had tumor lysis syndrome as his leukemia dramatically regressed, and a patient with mantle cell lymphoma obtained an ongoing partial remission. None of the 10 patients developed graft-versus-host disease (GVHD). Toxicities included transient hypotension and fever. We detected cells containing the anti-CD19-CAR gene in the blood of 8 of 10 patients. These results show for the first time that donor-derived allogeneic anti-CD19-CAR T cells can cause regression of B-cell malignancies resistant to standard DLIs without causing GVHD.


Blood | 2014

GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity.

Michael A. Spinner; Lauren A. Sanchez; Amy P. Hsu; Pamela A. Shaw; Christa S. Zerbe; Katherine R. Calvo; Diane C. Arthur; Wenjuan Gu; Christine M. Gould; Carmen C. Brewer; Edward W. Cowen; Alexandra F. Freeman; Kenneth N. Olivier; Gulbu Uzel; Adrian M. Zelazny; Janine Daub; Christine Spalding; Reginald J. Claypool; Neelam Giri; Blanche P. Alter; Emily M. Mace; Jordan S. Orange; Jennifer Cuellar-Rodriguez; Dennis D. Hickstein; Steven M. Holland

Haploinsufficiency of the hematopoietic transcription factor GATA2 underlies monocytopenia and mycobacterial infections; dendritic cell, monocyte, B, and natural killer (NK) lymphoid deficiency; familial myelodysplastic syndromes (MDS)/acute myeloid leukemia (AML); and Emberger syndrome (primary lymphedema with MDS). A comprehensive examination of the clinical features of GATA2 deficiency is currently lacking. We reviewed the medical records of 57 patients with GATA2 deficiency evaluated at the National Institutes of Health from January 1, 1992, to March 1, 2013, and categorized mutations as missense, null, or regulatory to identify genotype-phenotype associations. We identified a broad spectrum of disease: hematologic (MDS 84%, AML 14%, chronic myelomonocytic leukemia 8%), infectious (severe viral 70%, disseminated mycobacterial 53%, and invasive fungal infections 16%), pulmonary (diffusion 79% and ventilatory defects 63%, pulmonary alveolar proteinosis 18%, pulmonary arterial hypertension 9%), dermatologic (warts 53%, panniculitis 30%), neoplastic (human papillomavirus+ tumors 35%, Epstein-Barr virus+ tumors 4%), vascular/lymphatic (venous thrombosis 25%, lymphedema 11%), sensorineural hearing loss 76%, miscarriage 33%, and hypothyroidism 14%. Viral infections and lymphedema were more common in individuals with null mutations (P = .038 and P = .006, respectively). Monocytopenia, B, NK, and CD4 lymphocytopenia correlated with the presence of disease (P < .001). GATA2 deficiency unites susceptibility to MDS/AML, immunodeficiency, pulmonary disease, and vascular/lymphatic dysfunction. Early genetic diagnosis is critical to direct clinical management, preventive care, and family screening.


Journal of Biological Chemistry | 1998

Oncoprotein TLS Interacts with Serine-Arginine Proteins Involved in RNA Splicing

Liu Yang; Lisa J. Embree; Schickwann Tsai; Dennis D. Hickstein

The gene encoding the human TLS protein, also termed FUS, is located at the site of chromosomal translocations in human leukemias and sarcomas where it forms a chimeric fusion gene with one of several different genes. To identify interacting partners of TLS, we screened a yeast two-hybrid cDNA library constructed from mouse hematopoietic cells using the C-terminal region of TLS in the bait plasmid. Two cDNAs encoding members of the serine-arginine (SR) family of proteins were isolated. The first SR protein is the mouse homolog of human splicing factor SC35, and the second SR member is a novel 183-amino acid protein that we term TASR (TLS-associated serine-arginine protein). cDNA cloning of human TASR indicated that mouse and human TASR have identical amino acid sequences. The interactions between TLS and these two SR proteins were confirmed by co-transfection and immunoprecipitation studies. In vivosplicing assays indicated that SC35 and TASR influence splice site selection of adenovirus E1A pre-mRNA. TLS may recruit SR splicing factors to specific target genes through interaction with its C-terminal region, and chromosomal translocations that truncate the C-terminal region of TLS may prevent this interaction. Thus TLS translocations may alter RNA processing and play a role in malignant transformation.


Journal of Clinical Oncology | 2016

Allogeneic T Cells That Express an Anti-CD19 Chimeric Antigen Receptor Induce Remissions of B-Cell Malignancies That Progress After Allogeneic Hematopoietic Stem-Cell Transplantation Without Causing Graft-Versus-Host Disease

Jennifer N. Brudno; Robert Somerville; Victoria Shi; Jeremy J. Rose; David Halverson; Daniel H. Fowler; Juan Gea-Banacloche; Steven Z. Pavletic; Dennis D. Hickstein; Tangying L. Lu; Steven A. Feldman; Alexander T. Iwamoto; Roger Kurlander; Irina Maric; Andre Goy; Brenna Hansen; Jennifer Wilder; Bazetta Blacklock-Schuver; Frances T. Hakim; Steven A. Rosenberg; Ronald E. Gress; James N. Kochenderfer

PURPOSE Progressive malignancy is the leading cause of death after allogeneic hematopoietic stem-cell transplantation (alloHSCT). After alloHSCT, B-cell malignancies often are treated with unmanipulated donor lymphocyte infusions (DLIs) from the transplant donor. DLIs frequently are not effective at eradicating malignancy and often cause graft-versus-host disease, a potentially lethal immune response against normal recipient tissues. METHODS We conducted a clinical trial of allogeneic T cells genetically engineered to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. Patients with B-cell malignancies that had progressed after alloHSCT received a single infusion of CAR T cells. No chemotherapy or other therapies were administered. The T cells were obtained from each recipients alloHSCT donor. RESULTS Eight of 20 treated patients obtained remission, which included six complete remissions (CRs) and two partial remissions. The response rate was highest for acute lymphoblastic leukemia, with four of five patients obtaining minimal residual disease-negative CR. Responses also occurred in chronic lymphocytic leukemia and lymphoma. The longest ongoing CR was more than 30 months in a patient with chronic lymphocytic leukemia. New-onset acute graft-versus-host disease after CAR T-cell infusion developed in none of the patients. Toxicities included fever, tachycardia, and hypotension. Peak blood CAR T-cell levels were higher in patients who obtained remissions than in those who did not. Programmed cell death protein-1 expression was significantly elevated on CAR T cells after infusion. Presence of blood B cells before CAR T-cell infusion was associated with higher postinfusion CAR T-cell levels. CONCLUSION Allogeneic anti-CD19 CAR T cells can effectively treat B-cell malignancies that progress after alloHSCT. The findings point toward a future when antigen-specific T-cell therapies will play a central role in alloHSCT.


Proceedings of the National Academy of Sciences of the United States of America | 2006

TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia

Hatem E. Sabaawy; Mizuki Azuma; Lisa J. Embree; Huai-Jen Tsai; Matthew F. Starost; Dennis D. Hickstein

Acute lymphoblastic leukemia (ALL) is a clonal disease that evolves through the accrual of genetic rearrangements and/or mutations within the dominant clone. The TEL-AML1 (ETV6-RUNX1) fusion in precursor-B (pre-B) ALL is the most common genetic rearrangement in childhood cancer; however, the cellular origin and the molecular pathogenesis of TEL-AML1-induced leukemia have not been identified. To study the origin of TEL-AML1-induced ALL, we generated transgenic zebrafish expressing TEL-AML1 either ubiquitously or in lymphoid progenitors. TEL-AML1 expression in all lineages, but not lymphoid-restricted expression, led to progenitor cell expansion that evolved into oligoclonal B-lineage ALL in 3% of the transgenic zebrafish. This leukemia was transplantable to conditioned wild-type recipients. We demonstrate that TEL-AML1 induces a B cell differentiation arrest, and that leukemia development is associated with loss of TEL expression and elevated Bcl2/Bax ratio. The TEL-AML1 transgenic zebrafish models human pre-B ALL, identifies the molecular pathways associated with leukemia development, and serves as the foundation for subsequent genetic screens to identify modifiers and leukemia therapeutic targets.


Nature Medicine | 2008

Successful treatment of canine leukocyte adhesion deficiency by foamy virus vectors

Thomas R. Bauer; James M. Allen; Mehreen Hai; Laura M. Tuschong; Iram F. Khan; Erik Olson; Rima Adler; Tanya H. Burkholder; Yu Chen Gu; David W. Russell; Dennis D. Hickstein

Recent successes in treating genetic immunodeficiencies have demonstrated the therapeutic potential of stem cell gene therapy. However, the use of gammaretroviral vectors in these trials led to insertional activation of nearby oncogenes and leukemias in some study subjects, prompting studies of modified or alternative vector systems. Here we describe the use of foamy virus vectors to treat canine leukocyte adhesion deficiency (CLAD). Four of five dogs with CLAD that received nonmyeloablative conditioning and infusion of autologous, CD34+ hematopoietic stem cells transduced by a foamy virus vector expressing canine CD18 had complete reversal of the CLAD phenotype, which was sustained more than 2 years after infusion. In vitro assays showed correction of the lymphocyte proliferation and neutrophil adhesion defects that characterize CLAD. There were no genotoxic complications, and integration site analysis showed polyclonality of transduced cells and a decreased risk of integration near oncogenes as compared to gammaretroviral vectors. These results represent the first successful use of a foamy virus vector to treat a genetic disease, to our knowledge, and suggest that foamy virus vectors will be effective in treating human hematopoietic diseases.


Molecular and Cellular Biology | 2000

TLS-ERG Leukemia Fusion Protein Inhibits RNA Splicing Mediated by Serine-Arginine Proteins

Liu Yang; Lisa J. Embree; Dennis D. Hickstein

ABSTRACT The translocation liposarcoma (TLS) gene is fused to the ETS-related gene (ERG) in human myeloid leukemia, resulting in the generation of a TLS-ERG protein. We demonstrate that both TLS and the TLS-ERG leukemia fusion protein bind to RNA polymerase II through the TLS N-terminal domain, which is retained in the fusion protein; however, TLS recruits members of the serine-arginine (SR) family of splicing factors through its C-terminal domain, whereas the TLS-ERG fusion protein lacks the ability to recruit SR proteins due to replacement of the C-terminal domain by the fusion partner ERG. In transient-transfection assays, the TLS-ERG fusion protein inhibits E1A pre-mRNA splicing mediated by these TLS-associated SR proteins (TASR), and stable expression of the TLS-ERG fusion protein in K562 cells alters the splicing profile of CD44 mRNA. These results suggest that TLS fusion proteins may lead to cellular abnormalities by interfering with the splicing of important cellular regulators.


Journal of Biological Chemistry | 1998

The ets Family Member Tel Binds to the Fli-1 Oncoprotein and Inhibits Its Transcriptional Activity

Boguslaw A. Kwiatkowski; Bastian Ls; Thomas R. Bauer; Tsai S; Anna Zielinska-Kwiatkowska; Dennis D. Hickstein

The tel gene, recently shown to be translocated in a spectrum of acute and chronic human leukemias, belongs to the ets family of sequence-specific transcription factors. To determine the role of Tel in normal hematopoietic development, we used the tel gene as the bait in the yeast two-hybrid system to screen a hematopoietic stem cell library. Two partners were identified: Tel binds to itself, and Tel binds to the ets family member Fli-1. In vitroand in vivo assays confirmed these interactions. In transient transfection assays, Fli-1 transactivates megakaryocytic specific promoters, and Tel inhibits this effect of Fli-1. Transactivation studies using deletion mutants of Tel, and the Tel-AML-1 fusion protein, indicate that the helix-loop-helix domain of Tel only partially inhibits transactivation and that complete inhibition requires the full-length Tel molecule, including the DNA binding domain. The Tel and Fli-1 proteins are expressed early in hematopoiesis, and the inability of Tel fusion proteins such as Tel-AML-1 to counteract Fli-1 mediated transactivation may contribute to the malignant phenotype in human leukemias where this fusion protein is present.


Blood | 2013

GATA2 haploinsufficiency caused by mutations in a conserved intronic element leads to MonoMAC syndrome

Amy P. Hsu; Kirby D. Johnson; Falcone El; Rajendran Sanalkumar; Lauren A. Sanchez; Dennis D. Hickstein; Jennifer Cuellar-Rodriguez; Jacob Lemieux; Christa S. Zerbe; Emery H. Bresnick; Steven M. Holland

Previous reports of GATA2 mutations have focused on the coding region of the gene or full gene deletions. We recently identified 2 patients with novel insertion/deletion mutations predicted to result in mRNA nonsense-mediated decay, suggesting haploinsufficiency as the mechanism of GATA2 deficient disease. We therefore screened patients without identified exonic lesions for mutations within conserved noncoding and intronic regions. We discovered 1 patient with an intronic deletion mutation, 4 patients with point mutations within a conserved intronic element, and 3 patients with reduced or absent transcription from 1 allele. All mutations affected GATA2 transcription. Full-length cDNA analysis provided evidence for decreased expression of the mutant alleles. The intronic deletion and point mutations considerably reduced the enhancer activity of the intron 5 enhancer. Analysis of 512 immune system genes revealed similar expression profiles in all clinically affected patients and reduced GATA2 transcript levels. These mutations strongly support the haploinsufficient nature of GATA2 deficiency and identify transcriptional mechanisms and targets that lead to MonoMAC syndrome.

Collaboration


Dive into the Dennis D. Hickstein's collaboration.

Top Co-Authors

Avatar

Thomas R. Bauer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Steven M. Holland

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Laura M. Tuschong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Amy P. Hsu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Juan Gea-Banacloche

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Katherine R. Calvo

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa J. Embree

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alexandra F. Freeman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tanya H. Burkholder

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge