Dennis G. Ballinger
Myriad Genetics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dennis G. Ballinger.
Science | 2007
Laura D. Wood; D. Williams Parsons; Siân Jones; Jimmy Lin; Tobias Sjöblom; Rebecca J. Leary; Dong Shen; Simina M. Boca; Thomas D. Barber; Janine Ptak; Natalie Silliman; Steve Szabo; Zoltan Dezso; Vadim Ustyanksky; Tatiana Nikolskaya; Yuri Nikolsky; Rachel Karchin; Paul Wilson; Joshua S. Kaminker; Zemin Zhang; Randal Croshaw; Joseph Willis; Dawn Dawson; Michail Shipitsin; James K V Willson; Saraswati Sukumar; Kornelia Polyak; Ben Ho Park; Charit L. Pethiyagoda; P.V. Krishna Pant
Human cancer is caused by the accumulation of mutations in oncogenes and tumor suppressor genes. To catalog the genetic changes that occur during tumorigenesis, we isolated DNA from 11 breast and 11 colorectal tumors and determined the sequences of the genes in the Reference Sequence database in these samples. Based on analysis of exons representing 20,857 transcripts from 18,191 genes, we conclude that the genomic landscapes of breast and colorectal cancers are composed of a handful of commonly mutated gene “mountains” and a much larger number of gene “hills” that are mutated at low frequency. We describe statistical and bioinformatic tools that may help identify mutations with a role in tumorigenesis. These results have implications for understanding the nature and heterogeneity of human cancers and for using personal genomics for tumor diagnosis and therapy.
Science | 2010
Radoje Drmanac; Andrew Sparks; Matthew J. Callow; Aaron L. Halpern; Norman L. Burns; Bahram Ghaffarzadeh Kermani; Paolo Carnevali; Igor Nazarenko; Geoffrey B. Nilsen; George Yeung; Fredrik Dahl; Andres Fernandez; Bryan Staker; Krishna Pant; Jonathan Baccash; Adam P. Borcherding; Anushka Brownley; Ryan Cedeno; Linsu Chen; Dan Chernikoff; Alex Cheung; Razvan Chirita; Benjamin Curson; Jessica Ebert; Coleen R. Hacker; Robert Hartlage; Brian Hauser; Steve Huang; Yuan Jiang; Vitali Karpinchyk
Toward
The New England Journal of Medicine | 2008
Geoffrey Hom; Robert R. Graham; Barmak Modrek; Kimberly E. Taylor; Ward Ortmann; Sophie Garnier; Annette Lee; Sharon A. Chung; Ricardo C. Ferreira; P.V. Krishna Pant; Dennis G. Ballinger; Roman Kosoy; F. Yesim Demirci; M. Ilyas Kamboh; Amy H. Kao; Chao Tian; Iva Gunnarsson; Anders Bengtsson; Solbritt Rantapää-Dahlqvist; Michelle Petri; Susan Manzi; Michael F. Seldin; Lars Rönnblom; Ann-Christine Syvänen; Lindsey A. Criswell; Peter K. Gregersen; Timothy W. Behrens
1000 Genomes The ability to generate human genome sequence data that is complete, accurate, and inexpensive is a necessary prerequisite to perform genome-wide disease association studies. Drmanac et al. (p. 78, published online 5 November) present a technique advancing toward this goal. The method uses Type IIS endonucleases to incorporate short oligonucleotides within a set of randomly sheared circularized DNA. DNA polymerase then generates concatenated copies of the circular oligonucleotides leading to formation of compact but very long oligonucleotides which are then sequenced by ligation. The relatively low cost of this technology, which shows a low error rate, advances sequencing closer to the goal of the
Nature Genetics | 2008
Albert Tenesa; Susan M. Farrington; James Prendergast; Mary Porteous; Marion Walker; Naila Haq; Rebecca A. Barnetson; Evropi Theodoratou; Roseanne Cetnarskyj; Nicola Cartwright; Colin A. Semple; Andy Clark; Fiona Reid; Lorna Smith; Thibaud Koessler; Paul Pharoah; Stephan Buch; Clemens Schafmayer; Jürgen Tepel; Stefan Schreiber; Henry Völzke; Carsten Schmidt; Jochen Hampe; Jenny Chang-Claude; Michael Hoffmeister; Hermann Brenner; Stefan Wilkening; Federico Canzian; Gabriel Capellá; Victor Moreno
1000 genome. A low-cost sequencing technique advances us closer to the goal of the
American Journal of Human Genetics | 2005
Demetrius M. Maraganore; Mariza de Andrade; Timothy G. Lesnick; Kari J. Strain; Matthew J. Farrer; Walter A. Rocca; P.V. Krishna Pant; Kelly A. Frazer; D. R. Cox; Dennis G. Ballinger
1000 human genome. Genome sequencing of large numbers of individuals promises to advance the understanding, treatment, and prevention of human diseases, among other applications. We describe a genome sequencing platform that achieves efficient imaging and low reagent consumption with combinatorial probe anchor ligation chemistry to independently assay each base from patterned nanoarrays of self-assembling DNA nanoballs. We sequenced three human genomes with this platform, generating an average of 45- to 87-fold coverage per genome and identifying 3.2 to 4.5 million sequence variants per genome. Validation of one genome data set demonstrates a sequence accuracy of about 1 false variant per 100 kilobases. The high accuracy, affordable cost of
Nature | 2010
William Lee; Zhaoshi Jiang; Jinfeng Liu; Peter M. Haverty; Yinghui Guan; Jeremy Stinson; Peng Yue; Yan Zhang; Krishna P. Pant; Deepali Bhatt; Connie Ha; Stephanie Johnson; Michael Kennemer; Sankar Mohan; Igor Nazarenko; Colin K. Watanabe; Andrew Sparks; David S. Shames; Robert Gentleman; Frederic J. de Sauvage; Howard M. Stern; Ajay Pandita; Dennis G. Ballinger; Radoje Drmanac; Zora Modrusan; Somasekar Seshagiri; Zemin Zhang
4400 for sequencing consumables, and scalability of this platform enable complete human genome sequencing for the detection of rare variants in large-scale genetic studies.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Kenneth L. McNally; Kevin L. Childs; Regina Bohnert; Rebecca M. Davidson; Keyan Zhao; Victor Jun Ulat; Georg Zeller; Richard M. Clark; Douglas R. Hoen; Thomas E. Bureau; Renee Stokowski; Dennis G. Ballinger; Kelly A. Frazer; D. R. Cox; Badri Padhukasahasram; Carlos Bustamante; Detlef Weigel; David J. Mackill; Richard Bruskiewich; Gunnar Rätsch; C. Robin Buell; Hei Leung; Jan E. Leach
BACKGROUND Systemic lupus erythematosus (SLE) is a clinically heterogeneous disease in which the risk of disease is influenced by complex genetic and environmental contributions. Alleles of HLA-DRB1, IRF5, and STAT4 are established susceptibility genes; there is strong evidence for the existence of additional risk loci. METHODS We genotyped more than 500,000 single-nucleotide polymorphisms (SNPs) in DNA samples from 1311 case subjects with SLE and 1783 control subjects; all subjects were North Americans of European descent. Genotypes from 1557 additional control subjects were obtained from public data repositories. We measured the association between the SNPs and SLE after applying strict quality-control filters to reduce technical artifacts and to correct for the presence of population stratification. Replication of the top loci was performed in 793 case subjects and 857 control subjects from Sweden. RESULTS Genetic variation in the region upstream from the transcription initiation site of the gene encoding B lymphoid tyrosine kinase (BLK) and C8orf13 (chromosome 8p23.1) was associated with disease risk in both the U.S. and Swedish case-control series (rs13277113; odds ratio, 1.39; P=1x10(-10)) and also with altered levels of messenger RNA in B-cell lines. In addition, variants on chromosome 16p11.22, near the genes encoding integrin alpha M (ITGAM, or CD11b) and integrin alpha X (ITGAX), were associated with SLE in the combined sample (rs11574637; odds ratio, 1.33; P=3x10(-11)). CONCLUSIONS We identified and then confirmed through replication two new genetic loci for SLE: a promoter-region allele associated with reduced expression of BLK and increased expression of C8orf13 and variants in the ITGAM-ITGAX region.
Nature Genetics | 2010
Chao Tian; Renee Stokowski; David Kershenobich; Dennis G. Ballinger; David A. Hinds
In a genome-wide association study to identify loci associated with colorectal cancer (CRC) risk, we genotyped 555,510 SNPs in 1,012 early-onset Scottish CRC cases and 1,012 controls (phase 1). In phase 2, we genotyped the 15,008 highest-ranked SNPs in 2,057 Scottish cases and 2,111 controls. We then genotyped the five highest-ranked SNPs from the joint phase 1 and 2 analysis in 14,500 cases and 13,294 controls from seven populations, and identified a previously unreported association, rs3802842 on 11q23 (OR = 1.1; P = 5.8 × 10−10), showing population differences in risk. We also replicated and fine-mapped associations at 8q24 (rs7014346; OR = 1.19; P = 8.6 × 10−26) and 18q21 (rs4939827; OR = 1.2; P = 7.8 × 10−28). Risk was greater for rectal than for colon cancer for rs3802842 (P < 0.008) and rs4939827 (P < 0.009). Carrying all six possible risk alleles yielded OR = 2.6 (95% CI = 1.75–3.89) for CRC. These findings extend our understanding of the role of common genetic variation in CRC etiology.
Nature Genetics | 2007
Teri A. Manolio; Laura Lyman Rodriguez; Lisa D. Brooks; Gonçalo R. Abecasis; Dennis G. Ballinger; Mark J. Daly; Peter Donnelly; Stephen V. Faraone; Kelly A. Frazer; Stacey Gabriel; Pablo V. Gejman; Alan E. Guttmacher; Emily L. Harris; Thomas R. Insel; John R. Kelsoe; Eric S. Lander; Norma McCowin; Matthew D. Mailman; Elizabeth G. Nabel; James Ostell; Elizabeth W. Pugh; Stephen T. Sherry; Patrick F. Sullivan; John F. Thompson; James H. Warram; David Wholley; Patrice M. Milos; Francis S. Collins
We performed a two-tiered, whole-genome association study of Parkinson disease (PD). For tier 1, we individually genotyped 198,345 uniformly spaced and informative single-nucleotide polymorphisms (SNPs) in 443 sibling pairs discordant for PD. For tier 2a, we individually genotyped 1,793 PD-associated SNPs (P<.01 in tier 1) and 300 genomic control SNPs in 332 matched case-unrelated control pairs. We identified 11 SNPs that were associated with PD (P<.01) in both tier 1 and tier 2 samples and had the same direction of effect. For these SNPs, we combined data from the case-unaffected sibling pair (tier 1) and case-unrelated control pair (tier 2) samples and employed a liberalization of the sibling transmission/disequilibrium test to calculate odds ratios, 95% confidence intervals, and P values. A SNP within the semaphorin 5A gene (SEMA5A) had the lowest combined P value (P=7.62 x 10(-6)). The protein encoded by this gene plays an important role in neurogenesis and in neuronal apoptosis, which is consistent with existing hypotheses regarding PD pathogenesis. A second SNP tagged the PARK11 late-onset PD susceptibility locus (P=1.70 x 10(-5)). In tier 2b, we also selected for genotyping additional SNPs that were borderline significant (P<.05) in tier 1 but that tested a priori biological and genetic hypotheses regarding susceptibility to PD (n=941 SNPs). In analysis of the combined tier 1 and tier 2b data, the two SNPs with the lowest P values (P=9.07 x 10(-6); P=2.96 x 10(-5)) tagged the PARK10 late-onset PD susceptibility locus. Independent replication across populations will clarify the role of the genomic loci tagged by these SNPs in conferring PD susceptibility.
Nature Genetics | 2005
Susan E. Ptak; David A. Hinds; Kathrin Koehler; Birgit Nickel; Nila Patil; Dennis G. Ballinger; Molly Przeworski; Kelly A. Frazer; Svante Pääbo
Lung cancer is the leading cause of cancer-related mortality worldwide, with non-small-cell lung carcinomas in smokers being the predominant form of the disease. Although previous studies have identified important common somatic mutations in lung cancers, they have primarily focused on a limited set of genes and have thus provided a constrained view of the mutational spectrum. Recent cancer sequencing efforts have used next-generation sequencing technologies to provide a genome-wide view of mutations in leukaemia, breast cancer and cancer cell lines. Here we present the complete sequences of a primary lung tumour (60× coverage) and adjacent normal tissue (46×). Comparing the two genomes, we identify a wide variety of somatic variations, including >50,000 high-confidence single nucleotide variants. We validated 530 somatic single nucleotide variants in this tumour, including one in the KRAS proto-oncogene and 391 others in coding regions, as well as 43 large-scale structural variations. These constitute a large set of new somatic mutations and yield an estimated 17.7 per megabase genome-wide somatic mutation rate. Notably, we observe a distinct pattern of selection against mutations within expressed genes compared to non-expressed genes and in promoter regions up to 5 kilobases upstream of all protein-coding genes. Furthermore, we observe a higher rate of amino acid-changing mutations in kinase genes. We present a comprehensive view of somatic alterations in a single lung tumour, and provide the first evidence, to our knowledge, of distinct selective pressures present within the tumour environment.