Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dennis J. Hazelett is active.

Publication


Featured researches published by Dennis J. Hazelett.


Cell | 2000

act up Controls Actin Polymerization to Alter Cell Shape and Restrict Hedgehog Signaling in the Drosophila Eye Disc

Aude Benlali; Irena Draskovic; Dennis J. Hazelett; Jessica E. Treisman

Cells in the morphogenetic furrow of the Drosophila eye disc undergo a striking shape change immediately prior to their neuronal differentiation. We have isolated mutations in a novel gene, act up (acu), that is required for this shape change. acu encodes a homolog of yeast cyclase-associated protein, which sequesters monomeric actin; we show that acu is required to prevent actin filament polymerization in the eye disc. In contrast, profilin promotes actin filament polymerization, acting epistatically to acu. However, both acu and profilin are required to prevent premature Hedgehog-induced photoreceptor differentiation ahead of the morphogenetic furrow. These findings suggest that dynamic changes in actin filaments alter cell shape to control the movement of signals that coordinate a wave of differentiation.


PLOS Genetics | 2014

Comprehensive Functional Annotation of 77 Prostate Cancer Risk Loci

Dennis J. Hazelett; Suhn Kyong Rhie; Malaina Gaddis; Chunli Yan; Daniel L. Lakeland; Simon G. Coetzee; Brian E. Henderson; Houtan Noushmehr; Wendy Cozen; Zsofia Kote-Jarai; Rosalind Eeles; Douglas F. Easton; Christopher A. Haiman; Wange Lu; Peggy J. Farnham; Gerhard A. Coetzee

Genome-wide association studies (GWAS) have revolutionized the field of cancer genetics, but the causal links between increased genetic risk and onset/progression of disease processes remain to be identified. Here we report the first step in such an endeavor for prostate cancer. We provide a comprehensive annotation of the 77 known risk loci, based upon highly correlated variants in biologically relevant chromatin annotations— we identified 727 such potentially functional SNPs. We also provide a detailed account of possible protein disruption, microRNA target sequence disruption and regulatory response element disruption of all correlated SNPs at . 88% of the 727 SNPs fall within putative enhancers, and many alter critical residues in the response elements of transcription factors known to be involved in prostate biology. We define as risk enhancers those regions with enhancer chromatin biofeatures in prostate-derived cell lines with prostate-cancer correlated SNPs. To aid the identification of these enhancers, we performed genomewide ChIP-seq for H3K27-acetylation, a mark of actively engaged enhancers, as well as the transcription factor TCF7L2. We analyzed in depth three variants in risk enhancers, two of which show significantly altered androgen sensitivity in LNCaP cells. This includes rs4907792, that is in linkage disequilibrium () with an eQTL for NUDT11 (on the X chromosome) in prostate tissue, and rs10486567, the index SNP in intron 3 of the JAZF1 gene on chromosome 7. Rs4907792 is within a critical residue of a strong consensus androgen response element that is interrupted in the protective allele, resulting in a 56% decrease in its androgen sensitivity, whereas rs10486567 affects both NKX3-1 and FOXA-AR motifs where the risk allele results in a 39% increase in basal activity and a 28% fold-increase in androgen stimulated enhancer activity. Identification of such enhancer variants and their potential target genes represents a preliminary step in connecting risk to disease process.


Genetics | 2004

A mosaic genetic screen reveals distinct roles for Trithorax and Polycomb group genes in Drosophila eye development

Florence Janody; Jeffrey D. Lee; Neal Jahren; Dennis J. Hazelett; Aude Benlali; Grant I. Miura; Irena Draskovic; Jessica E. Treisman

The wave of differentiation that traverses the Drosophila eye disc requires rapid transitions in gene expression that are controlled by a number of signaling molecules also required in other developmental processes. We have used a mosaic genetic screen to systematically identify autosomal genes required for the normal pattern of photoreceptor differentiation, independent of their requirements for viability. In addition to genes known to be important for eye development and to known and novel components of the Hedgehog, Decapentaplegic, Wingless, Epidermal growth factor receptor, and Notch signaling pathways, we identified several members of the Polycomb and trithorax classes of genes encoding general transcriptional regulators. Mutations in these genes disrupt the transitions between zones along the anterior-posterior axis of the eye disc that express different combinations of transcription factors. Different trithorax group genes have very different mutant phenotypes, indicating that target genes differ in their requirements for chromatin remodeling, histone modification, and coactivation factors.


Cancer Epidemiology, Biomarkers & Prevention | 2017

The OncoArray Consortium: a Network for Understanding the Genetic Architecture of Common Cancers.

Christopher I. Amos; Joe Dennis; Zhaoming Wang; Jinyoung Byun; Fredrick R. Schumacher; Simon A. Gayther; Graham Casey; David J. Hunter; Thomas A. Sellers; Stephen B. Gruber; Alison M. Dunning; Kyriaki Michailidou; Laura Fachal; Kimberly F. Doheny; Amanda B. Spurdle; Yafang Li; Xiangjun Xiao; Jane Romm; Elizabeth W. Pugh; Gerhard A. Coetzee; Dennis J. Hazelett; Stig E. Bojesen; Charlisse F. Caga-anan; Christopher A. Haiman; Ahsan Kamal; Craig Luccarini; Daniel C. Tessier; Daniel Vincent; Francois Bacot; David Van Den Berg

Background: Common cancers develop through a multistep process often including inherited susceptibility. Collaboration among multiple institutions, and funding from multiple sources, has allowed the development of an inexpensive genotyping microarray, the OncoArray. The array includes a genome-wide backbone, comprising 230,000 SNPs tagging most common genetic variants, together with dense mapping of known susceptibility regions, rare variants from sequencing experiments, pharmacogenetic markers, and cancer-related traits. Methods: The OncoArray can be genotyped using a novel technology developed by Illumina to facilitate efficient genotyping. The consortium developed standard approaches for selecting SNPs for study, for quality control of markers, and for ancestry analysis. The array was genotyped at selected sites and with prespecified replicate samples to permit evaluation of genotyping accuracy among centers and by ethnic background. Results: The OncoArray consortium genotyped 447,705 samples. A total of 494,763 SNPs passed quality control steps with a sample success rate of 97% of the samples. Participating sites performed ancestry analysis using a common set of markers and a scoring algorithm based on principal components analysis. Conclusions: Results from these analyses will enable researchers to identify new susceptibility loci, perform fine-mapping of new or known loci associated with either single or multiple cancers, assess the degree of overlap in cancer causation and pleiotropic effects of loci that have been identified for disease-specific risk, and jointly model genetic, environmental, and lifestyle-related exposures. Impact: Ongoing analyses will shed light on etiology and risk assessment for many types of cancer. Cancer Epidemiol Biomarkers Prev; 26(1); 126–35. ©2016 AACR.


Nature Communications | 2014

A meta-analysis of Hodgkin lymphoma reveals 19p13.3 TCF3 as a novel susceptibility locus

Wendy Cozen; Maria Timofeeva; Dalin Li; Arjan Diepstra; Dennis J. Hazelett; Manon Delahaye-Sourdeix; Christopher K. Edlund; Lude Franke; Klaus Rostgaard; D. J. Van Den Berg; Victoria K. Cortessis; Karin E. Smedby; Sally L. Glaser; Harm-Jan Westra; L. L. Robison; Thomas M. Mack; Hervé Ghesquières; Amie Hwang; Alexandra Nieters; S de Sanjosé; Tracy Lightfoot; Nikolaus Becker; Marc Maynadié; Lenka Foretova; Eve Roman; Yolanda Benavente; Kristin A. Rand; Bharat N. Nathwani; Bengt Glimelius; Anthony Staines

Recent genome wide association studies (GWAS) of Hodgkin lymphoma (HL) have identified associations with genetic variation at both HLA and non-HLA loci; however, much of heritable HL susceptibility remains unexplained. Here we perform a meta-analysis of three HL GWAS totaling 1,816 cases and 7,877 controls followed by replication in an independent set of 1,281 cases and 3,218 controls to find novel risk loci. We identify a novel variant at 19p13.3 associated with HL (rs1860661; odds ratio [OR] = 0.81, 95% confidence interval [95% CI] = 0.76–0.86, Pcombined = 3.5 × 10−10), located in intron 2 of TCF3 (also known as E2A), a regulator of B- and T-cell lineage commitment known to be involved in HL pathogenesis. This meta-analysis also notes associations between previously published loci at 2p16.1, 5q31, 6p31.2, 8q24.21 and 10p14 and HL subtypes. We conclude that our data suggest a link between the 19p13.3 locus, including TCF3, and HL risk


Human Molecular Genetics | 2015

Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

Ali Amin Al Olama; Tokhir Dadaev; Dennis J. Hazelett; Qiyuan Li; Daniel Leongamornlert; Edward J. Saunders; Sarah Stephens; Clara Cieza-Borrella; Ian Whitmore; S Benlloch Garcia; Graham G. Giles; Melissa C. Southey; Liesel M. FitzGerald; Henrik Grönberg; Fredrik Wiklund; Markus Aly; Brian E. Henderson; Frederick R. Schumacher; Christopher A. Haiman; Johanna Schleutker; Tiina Wahlfors; Teuvo L.J. Tammela; Børge G. Nordestgaard; Timothy J. Key; Ruth C. Travis; David E. Neal; Jenny Donovan; F C Hamdy; P Pharoah; Nora Pashayan

Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same region.


Bioinformatics | 2015

motifbreakR: an R/Bioconductor package for predicting variant effects at transcription factor binding sites.

Simon G. Coetzee; Gerhard A. Coetzee; Dennis J. Hazelett

Summary: Functional annotation represents a key step toward the understanding and interpretation of germline and somatic variation as revealed by genome-wide association studies (GWAS) and The Cancer Genome Atlas (TCGA), respectively. GWAS have revealed numerous genetic risk variants residing in non-coding DNA associated with complex diseases. For sequences that lie within enhancers or promoters of transcription, it is not straightforward to assess the effects of variants on likely transcription factor binding sites. Consequently we introduce motifbreakR, which allows the biologist to judge whether the sequence surrounding a polymorphism or mutation is a good match, and how much information is gained or lost in one allele of the polymorphism or mutation relative to the other. MotifbreakR is flexible, giving a choice of algorithms for interrogation of genomes with motifs from many public sources that users can choose from. MotifbreakR can predict effects for novel or previously described variants in public databases, making it suitable for tasks beyond the scope of its original design. Lastly, it can be used to interrogate any genome curated within bioconductor. Availability and implementation: https://github.com/Simon-Coetzee/MotifBreakR, www.bioconductor.org. Contact: [email protected]


G3: Genes, Genomes, Genetics | 2012

Comparison of Parallel High-Throughput RNA Sequencing Between Knockout of TDP-43 and Its Overexpression Reveals Primarily Nonreciprocal and Nonoverlapping Gene Expression Changes in the Central Nervous System of Drosophila

Dennis J. Hazelett; Jer Cherng Chang; Daniel L. Lakeland; David B. Morton

The human Tar-DNA binding protein, TDP-43, is associated with amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. TDP-43 contains two conserved RNA-binding motifs and has documented roles in RNA metabolism, including pre-mRNA splicing and repression of transcription. Here, using Drosophila melanogaster as a model, we generated loss-of-function and overexpression genotypes of Tar-DNA binding protein homolog (TBPH) to study their effect on the transcriptome of the central nervous system (CNS). By using massively parallel sequencing methods (RNA-seq) to profile the CNS, we find that loss of TBPH results in widespread gene activation and altered splicing, much of which are reversed by rescue of TBPH expression. Conversely, TBPH overexpression results in decreased gene expression. Although previous studies implicated both absence and mis-expression of TDP-43 in ALS, our data exhibit little overlap in the gene expression between them, suggesting that the bulk of genes affected by TBPH loss-of-function and overexpression are different. In combination with computational approaches to identify likely TBPH targets and orthologs of previously identified vertebrate TDP-43 targets, we provide a comprehensive analysis of enriched gene ontologies. Our data suggest that TDP-43 plays a role in synaptic transmission, synaptic release, and endocytosis. We also uncovered a potential novel regulation of the Wnt and BMP pathways, many of whose targets appear to be conserved.


Human Molecular Genetics | 2015

Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions

Ying Han; Dennis J. Hazelett; Fredrik Wiklund; Fredrick R. Schumacher; Daniel O. Stram; Sonja I. Berndt; Zhaoming Wang; Kristin A. Rand; Robert N. Hoover; Mitchell J. Machiela; M. Yeager; Laurie Burdette; Charles C. Chung; Amy Hutchinson; Kai Yu; Jianfeng Xu; Ruth C. Travis; Timothy J. Key; Afshan Siddiq; Federico Canzian; Atsushi Takahashi; Michiaki Kubo; Janet L. Stanford; Suzanne Kolb; Susan M. Gapstur; W. Ryan Diver; Victoria L. Stevens; Sara S. Strom; Curtis A. Pettaway; Ali Amin Al Olama

Interpretation of biological mechanisms underlying genetic risk associations for prostate cancer is complicated by the relatively large number of risk variants (n = 100) and the thousands of surrogate SNPs in linkage disequilibrium. Here, we combined three distinct approaches: multiethnic fine-mapping, putative functional annotation (based upon epigenetic data and genome-encoded features), and expression quantitative trait loci (eQTL) analyses, in an attempt to reduce this complexity. We examined 67 risk regions using genotyping and imputation-based fine-mapping in populations of European (cases/controls: 8600/6946), African (cases/controls: 5327/5136), Japanese (cases/controls: 2563/4391) and Latino (cases/controls: 1034/1046) ancestry. Markers at 55 regions passed a region-specific significance threshold (P-value cutoff range: 3.9 × 10(-4)-5.6 × 10(-3)) and in 30 regions we identified markers that were more significantly associated with risk than the previously reported variants in the multiethnic sample. Novel secondary signals (P < 5.0 × 10(-6)) were also detected in two regions (rs13062436/3q21 and rs17181170/3p12). Among 666 variants in the 55 regions with P-values within one order of magnitude of the most-associated marker, 193 variants (29%) in 48 regions overlapped with epigenetic or other putative functional marks. In 11 of the 55 regions, cis-eQTLs were detected with nearby genes. For 12 of the 55 regions (22%), the most significant region-specific, prostate-cancer associated variant represented the strongest candidate functional variant based on our annotations; the number of regions increased to 20 (36%) and 27 (49%) when examining the 2 and 3 most significantly associated variants in each region, respectively. These results have prioritized subsets of candidate variants for downstream functional evaluation.


Acta Histochemica | 2011

The cell giveth and the cell taketh away: An overview of Notch pathway activation by endocytic trafficking of ligands and receptors

Emily B. Pratt; Jill S. Wentzell; Julia E. Maxson; Lauren Courter; Dennis J. Hazelett; Jan L. Christian

Notch signaling is firmly established as a form of cell-to-cell communication that is critical throughout development. Dysregulation of Notch has been linked to cancer and developmental disorders, making it an important target for therapeutic intervention. One aspect of this pathway that sets it apart from others is its apparent reliance on endocytosis by signal-sending and signal-receiving cells. The subtle details of endocytosis-mediated molecular processing within both ligand- and receptor-presenting cells that are required for the Notch signal to maintain fidelity remain unclear. The endosomal system has long been known to play an important role in terminating signal transduction by directing lysosomal trafficking and degradation of cell surface receptors. More recently, endocytic trafficking has also been shown to be critical for activation of signaling. This review highlights four models of endocytic processing in the context of the Notch pathway. In ligand-presenting cells, endocytosis may be required for pre-processing of ligands to make them competent for interaction with Notch receptors and/or for exerting a pulling force on the ligand/Notch complex. In receptor-presenting cells, endocytosis may be a prerequisite for Notch cleavage and thus activation and/or it could be a means of limiting ligand-independent Notch activation. Recent advances in our understanding of how and why endocytosis of Notch receptors and ligands is required for activation and termination of signaling during normal development and in disease states are discussed.

Collaboration


Dive into the Dennis J. Hazelett's collaboration.

Top Co-Authors

Avatar

Simon G. Coetzee

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gerhard A. Coetzee

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Kate Lawrenson

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Simon A. Gayther

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin P. Berman

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rosario I. Corona

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

David V. Conti

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Janet M. Lee

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Beth Y. Karlan

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge