Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dennis Larkin is active.

Publication


Featured researches published by Dennis Larkin.


Neurobiology of Disease | 2006

Taurine reverses neurological and neurovascular deficits in Zucker diabetic fatty rats

Fei Li; Omorodola I. Abatan; Howard Kim; Diana Burnett; Dennis Larkin; Irina G. Obrosova; Martin J. Stevens

Increased oxidative stress is implicated in the pathogenesis of diabetic peripheral neuropathy (DPN). However, the efficacy of antioxidant therapy on DPN complicating type 2 diabetes remains unexplored. We therefore determined the ability of the antioxidant taurine to reverse deficits of hind limb sciatic motor and digital sensory nerve conduction velocity (NCV), nerve blood flow (NBF), and sensory thresholds in hyperglycemic Zucker diabetic fatty (ZDF) rats. Experimental groups comprised lean nondiabetic (ND), ND treated with taurine (ND + T), untreated ZDF diabetic (D), and D rats treated with taurine (D + T). Compared to ND rats, 23%, 15% and 56% deficits of motor NCV, sensory NCV and NBF, respectively as well as thermal and mechanical hyperalgesia were reversed by taurine. An 84% deficit of dorsal root ganglion neuron calcitonin gene-related peptide in D rats was prevented by taurine. In summary, the antioxidant taurine reverses neurological and neurovascular deficits in experimental type 2 diabetes.


Diabetes | 2007

Protective Effects of Cyclooxygenase-2 Gene Inactivation Against Peripheral Nerve Dysfunction and Intraepidermal Nerve Fiber Loss in Experimental Diabetes

Aaron P. Kellogg; Tim Wiggin; Dennis Larkin; John M. Hayes; Martin J. Stevens; Rodica Pop-Busui

OBJECTIVE—Activation of the cyclooxygenase (COX) pathway with secondary neurovascular deficits are implicated in the pathogenesis of experimental diabetic peripheral neuropathy (DPN). The aim of this study was to explore the interrelationships between hyperglycemia, activation of the COX-2 pathway, and oxidative stress and inflammation in mediating peripheral nerve dysfunction and whether COX-2 gene inactivation attenuates nerve fiber loss in long-term experimental diabetes. RESEARCH DESIGN AND METHODS—Motor and sensory digital nerve conduction velocities, sciatic nerve indexes of oxidative stress, prostaglandin content, markers of inflammation, and intraepidermal nerve fiber (IENF) density were measured after 6 months in control and diabetic COX-2–deficient (COX-2−/−) and littermate wild-type (COX-2+/+) mice. The effects of a selective COX-2 inhibitor, celecoxib, on these markers were also investigated in diabetic rats. RESULTS—Under normal conditions, there were no differences in blood glucose, peripheral nerve electrophysiology, markers of oxidative stress, inflammation, and IENF density between COX-2+/+ and COX-2−/− mice. After 6 months, diabetic COX-2+/+ mice experienced significant deterioration in nerve conduction velocities and IENF density and developed important signs of increased oxidative stress and inflammation compared with nondiabetic mice. Diabetic COX-2−/− mice were protected against functional and biochemical deficits of experimental DPN and against nerve fiber loss. In diabetic rats, selective COX-2 inhibition replicated this protection. CONCLUSIONS—These data suggest that selective COX-2 inhibition may be useful for preventing or delaying DPN.


Journal of Pharmacology and Experimental Therapeutics | 2006

Nicotinamide Reverses Neurological and Neurovascular Deficits in Streptozotocin Diabetic Rats

Martin J. Stevens; Fei Li; Viktor R. Drel; Omrola Abatan; Howard Kim; Dianna Burnett; Dennis Larkin; Irina G. Obrosova

In diabetes, activation of the nuclear enzyme poly(ADP-ribose) polymerase (PARP) is an important effector of oxidative-nitrosative injury, which contributes to the development of experimental diabetic peripheral neuropathy (DPN). However, the potential toxicity of complete PARP inhibition necessitates the utilization of weaker PARP inhibitors with additional therapeutic properties. Nicotinamide (vitamin B3) is a weak PARP inhibitor, antioxidant, and calcium modulator and can improve energy status and inhibit cell death in ischemic tissues. We report the dose-dependent effects of nicotinamide in an established model of early DPN. Control and streptozotocin-diabetic rats were treated with 200 to 400 mg/kg/day nicotinamide (i.p.) for 2 weeks after 2 weeks of untreated diabetes. Sciatic endoneurial nutritive blood flow was measured by microelectrode polarography and hydrogen clearance, and sciatic motor and hind-limb digital sensory nerve conduction velocities and thermal and mechanical algesia were measured by standard electrophysiological and behavioral tests. Malondialdehyde plus 4-hydroxyalkenal concentration in the sciatic nerve and amino acid-(4)-hydroxynonenal adduct and poly(ADP-ribosyl)ated protein expression in human Schwann cells were assessed by a colorimetric method with N-methyl-2-phenyl indole and Western blot analysis, respectively. Nicotinamide corrected increased sciatic nerve lipid peroxidation in concert with nerve perfusion deficits and dose-dependently attenuated nerve conduction slowing, as well as mechanical and thermal hyperalgesia. Nicotinamide (25 mM) prevented high (30 mM) glucose-induced overexpression of amino acid-(4)-hydroxynonenal adducts and poly(ADP-ribosyl)ated proteins in human Schwann cells. In conclusion, nicotinamide deserves consideration as an attractive, nontoxic therapy for the treatment of DPN.


American Journal of Physiology-endocrinology and Metabolism | 1999

Downregulation of the human taurine transporter by glucose in cultured retinal pigment epithelial cells

Martin J. Stevens; Yoshiyuki Hosaka; Jennifer A. Masterson; Sandra M. Jones; Thommey P. Thomas; Dennis Larkin

In diabetes, activation of the aldose reductase (AR) pathway and alterations of glucose-sensitive signal transduction pathways have been implicated in depletion of intracellular taurine, an endogenous antioxidant and compatible osmolyte. Cellular taurine accumulation occurs by an osmotically induced, protein kinase C (PKC)-regulated Na+-taurine cotransporter (hTT). The effects of ambient glucose on taurine content, hTT activity, and hTT gene expression were therefore evaluated in low and high AR-expressing human retinal pigment epithelial cell lines. In low AR-expressing cells, 20 mM glucose decreased taurine content, hTT transporter activity, and mRNA levels, and these effects were unaffected by AR inhibition (ARI). In these cells, the inhibitory effects of high glucose on hTT appeared to be posttranscriptionally mediated, because 20 mM glucose decreased hTT mRNA stability without affecting hTT transcriptional rate. Inhibition of PKC overcame the decrease in hTT activity in high glucose-exposed cells. In high AR-expressing cells, prolonged exposure to 20 mM glucose resulted in intracellular taurine depletion, which paralleled sorbitol accumulation and was prevented by ARI. In these cells exposed to 5 mM glucose, hTT mRNA abundance was decreased and declined further in 20 mM glucose but was corrected by ARI. In 5 mM glucose, hTT transcriptional rate was markedly decreased in high AR-expressing cells, did not decline further in 20 mM glucose, but was increased by ARI to levels above those observed in low AR-expressing cells. Therefore, glucose rapidly and specifically decreases taurine content, hTT activity, and mRNA abundance by AR-unrelated and AR-related posttranscriptional and transcriptional mechanisms.In diabetes, activation of the aldose reductase (AR) pathway and alterations of glucose-sensitive signal transduction pathways have been implicated in depletion of intracellular taurine, an endogenous antioxidant and compatible osmolyte. Cellular taurine accumulation occurs by an osmotically induced, protein kinase C (PKC)-regulated Na(+)-taurine cotransporter (hTT). The effects of ambient glucose on taurine content, hTT activity, and hTT gene expression were therefore evaluated in low and high AR-expressing human retinal pigment epithelial cell lines. In low AR-expressing cells, 20 mM glucose decreased taurine content, hTT transporter activity, and mRNA levels, and these effects were unaffected by AR inhibition (ARI). In these cells, the inhibitory effects of high glucose on hTT appeared to be posttranscriptionally mediated, because 20 mM glucose decreased hTT mRNA stability without affecting hTT transcriptional rate. Inhibition of PKC overcame the decrease in hTT activity in high glucose-exposed cells. In high AR-expressing cells, prolonged exposure to 20 mM glucose resulted in intracellular taurine depletion, which paralleled sorbitol accumulation and was prevented by ARI. In these cells exposed to 5 mM glucose, hTT mRNA abundance was decreased and declined further in 20 mM glucose but was corrected by ARI. In 5 mM glucose, hTT transcriptional rate was markedly decreased in high AR-expressing cells, did not decline further in 20 mM glucose, but was increased by ARI to levels above those observed in low AR-expressing cells. Therefore, glucose rapidly and specifically decreases taurine content, hTT activity, and mRNA abundance by AR-unrelated and AR-related posttranscriptional and transcriptional mechanisms.


Journal of Biological Chemistry | 2008

Endoplasmic Reticulum (ER) Chaperone Regulation and Survival of Cells Compensating for Deficiency in the ER Stress Response Kinase, PERK

Yukihiro Yamaguchi; Dennis Larkin; Roberto Lara-Lemus; Jose Ramos-Castañeda; Ming Liu; Peter Arvan

The activity of PERK, an endoplasmic reticulum (ER) transmembrane protein kinase, assists in an ER stress response designed to inhibit general protein synthesis while allowing upregulated synthesis of selective proteins such as the ATF4 transcription factor. PERK null mice exhibit phenotypes that especially affect secretory cell types. Although embryonic fibroblasts from these mice are difficult to transfect with high efficiency, we have generated 293 cells stably expressing the PERK-K618A dominant negative mutant. 293/PERK-K618A cells, in response to ER stress: (a) do not properly inhibit general protein synthesis, (b) exhibit defective/delayed induction of ATF4 and BiP, and (c) exhibit exuberant splice activation of XBP1 and robust cleavage activation of ATF6, with abnormal regulation of calreticulin levels. The data suggest compensatory mechanisms allowing for cell survival in the absence of functional PERK. Interestingly, although induction of CHOP (a transcription factor implicated in apoptosis) is notably delayed after onset of ER stress, 293/PERK-K618A cells eventually produce CHOP at normal or even supranormal levels and exhibit increased apoptosis either in response to general ER stress or, more importantly, to specific misfolded secretory proteins.


Journal of Biological Chemistry | 2010

Misfolded Proinsulin Affects Bystander Proinsulin in Neonatal Diabetes

Israel Hodish; Ming Liu; Gautam Rajpal; Dennis Larkin; Ronald W. Holz; Aaron M. Adams; Leanza Liu; Peter Arvan

It has previously been shown that misfolded mutant Akita proinsulin in the endoplasmic reticulum engages directly in protein complexes either with nonmutant proinsulin or with “hProCpepGFP” (human proinsulin bearing emerald-GFP within the C-peptide), impairing the trafficking of these “bystander” proinsulin molecules (Liu, M., Hodish, I., Rhodes, C. J., and Arvan, P. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 15841–15846). Herein, we generated transgenic mice, which, in addition to expressing endogenous proinsulin, exhibit β-cell-specific expression of hProCpepGFP via the Ins1 promoter. In these mice, hProCpepGFP protein levels are physiologically regulated, and hProCpepGFP is packaged and processed to CpepGFP that is co-stored in β-secretory granules. Visualization of CpepGFP fluorescence provides a quantifiable measure of pancreatic islet insulin content that can be followed in live animals in states of health and disease. We examined loss of pancreatic insulin in hProCpepGFP transgenic mice mated to Akita mice that develop neonatal diabetes because of the expression of misfolded proinsulin. Loss of bystander insulin in Akita animals is detected initially as a block in CpepGFP/insulin production with intracellular accumulation of the precursor, followed ultimately by loss of pancreatic β-cells. The data support that misfolded proinsulin perturbs bystander proinsulin in the endoplasmic reticulum, leading to β-cell failure.


Diabetes | 2012

Impaired Cleavage of Preproinsulin Signal Peptide Linked to Autosomal-Dominant Diabetes

Ming Liu; Roberto Lara-Lemus; Shu-ou Shan; Jordan Wright; Leena Haataja; Fabrizio Barbetti; Huan Guo; Dennis Larkin; Peter Arvan

Recently, missense mutations upstream of preproinsulin’s signal peptide (SP) cleavage site were reported to cause mutant INS gene-induced diabetes of youth (MIDY). Our objective was to understand the molecular pathogenesis using metabolic labeling and assays of proinsulin export and insulin and C-peptide production to examine the earliest events of insulin biosynthesis, highlighting molecular mechanisms underlying β-cell failure plus a novel strategy that might ameliorate the MIDY syndrome. We find that whereas preproinsulin-A(SP23)S is efficiently cleaved, producing authentic proinsulin and insulin, preproinsulin-A(SP24)D is inefficiently cleaved at an improper site, producing two subpopulations of molecules. Both show impaired oxidative folding and are retained in the endoplasmic reticulum (ER). Preproinsulin-A(SP24)D also blocks ER exit of coexpressed wild-type proinsulin, accounting for its dominant-negative behavior. Upon increased expression of ER–oxidoreductin-1, preproinsulin-A(SP24)D remains blocked but oxidative folding of wild-type proinsulin improves, accelerating its ER export and increasing wild-type insulin production. We conclude that the efficiency of SP cleavage is linked to the oxidation of (pre)proinsulin. In turn, impaired (pre)proinsulin oxidation affects ER export of the mutant as well as that of coexpressed wild-type proinsulin. Improving oxidative folding of wild-type proinsulin may provide a feasible way to rescue insulin production in patients with MIDY.


Diabetes | 2011

In Vivo Misfolding of Proinsulin Below the Threshold of Frank Diabetes

Israel Hodish; Afaf Absood; Leanza Liu; Ming Liu; Leena Haataja; Dennis Larkin; Ahmed Al-Khafaji; Anthony Zaki; Peter Arvan

OBJECTIVE Endoplasmic reticulum (ER) stress has been described in pancreatic β-cells after onset of diabetes—a situation in which failing β-cells have exhausted available compensatory mechanisms. Herein we have compared two mouse models expressing equally small amounts of transgenic proinsulin in pancreatic β-cells. RESEARCH DESIGN AND METHODS In hProCpepGFP mice, human proinsulin (tagged with green fluorescent protein [GFP] within the connecting [C]-peptide) is folded in the ER, exported, converted to human insulin, and secreted. In hProC(A7)Y-CpepGFP mice, misfolding of transgenic mutant proinsulin causes its retention in the ER. Analysis of neonatal pancreas in both transgenic animals shows each β-cell stained positively for endogenous insulin and transgenic protein. RESULTS At this transgene expression level, most male hProC(A7)Y-CpepGFP mice do not develop frank diabetes, yet the misfolded proinsulin perturbs insulin production from endogenous proinsulin and activates ER stress response. In nondiabetic adult hProC(A7)Y-CpepGFP males, all β-cells continue to abundantly express transgene mRNA. Remarkably, however, a subset of β-cells in each islet becomes largely devoid of endogenous insulin, with some of these cells accumulating large quantities of misfolded mutant proinsulin, whereas another subset of β-cells has much less accumulated misfolded mutant proinsulin, with some of these cells containing abundant endogenous insulin. CONCLUSIONS The results indicate a source of pancreatic compensation before the development of diabetes caused by proinsulin misfolding with ER stress, i.e., the existence of an important subset of β-cells with relatively limited accumulation of misfolded proinsulin protein and maintenance of endogenous insulin production. Generation and maintenance of such a subset of β-cells may have implications in the avoidance of type 2 diabetes.


American Journal of Physiology-cell Physiology | 1998

Human Na+-myo-inositol cotransporter gene: alternate splicing generates diverse transcripts

Francesca Porcellati; Tommy Hlaing; Masaki Togawa; Martin J. Stevens; Dennis Larkin; Yoshiyuki Hosaka; Thomas W. Glover; Douglas N. Henry; Douglas A. Greene; Paul D. Killen

Na+- myo-inositol cotransport activity generally maintains millimolar intracellular concentrations of myo-inositol and specifically promotes transepithelial myo-inositol transport in kidney, intestine, retina, and choroid plexus. Glucose-induced, tissue-specific myo-inositol depletion and impaired Na+- myo-inositol cotransport activity are implicated in the pathogenesis of diabetic complications, a process modeled in vitro in cultured human retinal pigment epithelium (RPE) cells. To explore this process at the molecular level, a human RPE cDNA library was screened with a canine Na+-dependent myo-inositol cotransporter (SMIT) cDNA. Overlapping cDNAs spanning 3569 nt were cloned. The resulting cDNA sequence contained a 2154-nt open reading frame, 97% identical to the canine SMIT amino acid sequence. Genomic clones containing SMIT exons suggested that the cDNA is derived from at least five exons. Hypertonic stress induced a time-dependent increase, initially in a 16-kb transcript and subsequently in 11.5-, 9.8-, 8.5-, 3.8-, and ∼1.2-kb SMIT transcripts, that was ascribed to alternate exon splicing using exon-specific probes and direct cDNA sequencing. The human SMIT gene is a complex multiexon transcriptional unit that by alternate exon splicing generates multiple SMIT transcripts that accumulate differentially in response to hypertonic stress.


Diabetes | 2016

Monitoring C-Peptide Storage and Secretion in Islet β-Cells In Vitro and In Vivo

Shuaishuai Zhu; Dennis Larkin; Shusheng Lu; Candice M. Inouye; Leena Haataja; Arfah Anjum; Robert T. Kennedy; David Castle; Peter Arvan

Human proinsulin with C-peptide–bearing Superfolder Green Fluorescent Protein (CpepSfGFP) has been expressed in transgenic mice, driven by the Ins1 promoter. The protein, expressed exclusively in β-cells, is processed and stored as CpepSfGFP and human insulin comprising only ∼0.04% of total islet proinsulin plus insulin, exerting no metabolic impact. The kinetics of the release of insulin and CpepSfGFP from isolated islets appear identical. Upon a single acute stimulatory challenge in vitro, fractional release of insulin does not detectably deplete islet fluorescence. In vivo, fluorescence imaging of the pancreatic surface allows, for the first time, visual assessment of pancreatic islet insulin content, and we demonstrate that CpepSfGFP visibly declines upon diabetes progression in live lepRdb/db mice. In anesthetized mice, after intragastric or intravenous saline delivery, pancreatic CpepSfGFP (insulin) content remains undiminished. Remarkably, however, within 20 min after acute intragastric or intravenous glucose delivery (with blood glucose concentrations reaching >15 mmol/L), a small subset of islets shows rapid dispossession of a major fraction of their stored CpepSfGFP (insulin) content, whereas most islets exhibit no demonstrable loss of CpepSfGFP (insulin). These studies strongly suggest that there are “first responder” islets to an in vivo glycemic challenge, which cannot be replicated by islets in vitro.

Collaboration


Dive into the Dennis Larkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Arvan

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Li

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Ming Liu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Irina G. Obrosova

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge