Dennis M. Snow
University of Notre Dame
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dennis M. Snow.
Mathematische Annalen | 1986
Dennis M. Snow
On etudie la cohomologie de Ω q (k)=Ω q ⊗L k pour des espaces symetriques hermitiens de types A III, B I, et D I
Archive | 1989
Dennis M. Snow
Algebraic group actions on affine space, C n, are determined by finite dimensional algebraic subgroups of the full algebraic automorphism group, Aut C n. This group is anti-isomorphic to the group of algebra automorphisms of \( F_{n}= \text{\textbf{C}}[x_{1}, \cdots, x_{n}] \) by identifying the indeterminates x 1, …, x n with the standard coordinate functions: σ ∈ Aut C n defines σ* ∈ Aut F n by \(\sigma ^{*}f(x)= f(\sigma x)\), where f ∈ F n and x ∈ C n. In fact, an automorphism σ is often defined in terms of the polynomials \((\sigma ^{*}x_{1},\cdots, \sigma ^{*}x_{n})\). Two special subgroups of Aut C n play an important role in determining the structure of the finite dimensional algebraic subgroups. The first is the affine linear group,
Manuscripta Mathematica | 1985
Dennis M. Snow
Manuscripta Mathematica | 1988
Dennis M. Snow
A_{n}= \left \{ \sigma = (f_{1}, \cdots, f_{n}) \in \text{Aut} \textbf{C}^{n}\vert \text{deg} f_{i}\leq 1 \right \}
ACM Transactions on Mathematical Software | 1990
Dennis M. Snow
Archive | 2004
Dennis M. Snow
which is the semi-direct product of the general linear group, GL n(C), and the abelian group of translations, \(T_{n}\cong \textbf{C}^{n}\). The second is the ‘Jonquiere’, or ‘triangular’ subgroup
ACM Transactions on Mathematical Software | 1993
Dennis M. Snow
Proceedings of the American Mathematical Society | 2004
Dennis M. Snow
B_{n}= \left \{ \sigma = (f_{1}, \cdots, f_{n}) \in \text{Aut} \textbf {C}^{n}\vert f_{i}= c_{i}x_{i}+ h_{i}, c_{i}\in \textbf{C}, h_{i}\in \textbf{C}[x_{i+1}, \cdots, x_{n}] \right \}
Mathematische Annalen | 1982
Dennis M. Snow
Crelle's Journal | 1986
Dennis M. Snow
.