Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dennis Q. Truong is active.

Publication


Featured researches published by Dennis Q. Truong.


Frontiers in Psychiatry | 2012

Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models

Abhishek Datta; Dennis Q. Truong; Preet Minhas; Lucas C. Parra

Background: Transcranial Direct Current Stimulation (tDCS) is a non-invasive, versatile, and safe neuromodulation technology under investigation for the treatment of neuropsychiatric disorders, adjunct to rehabilitation, and cognitive enhancement in healthy adults. Despite promising results, there is variability in responsiveness. One potential source of variability is the intensity of current delivered to the brain which is a function of both the operator controlled tDCS dose (electrode montage and total applied current) and subject specific anatomy. We are interested in both the scale of this variability across anatomical typical adults and methods to normalize inter-individual variation by customizing tDCS dose. Computational FEM simulations are a standard technique to predict brain current flow during tDCS and can be based on subject specific anatomical MRI. Objective: To investigate this variability, we modeled multiple tDCS montages across three adults (ages 34–41, one female). Results: Conventional pad stimulation led to diffuse modulation with maximum current flow between the pads across all subjects. There was high current flow directly under the pad for one subject while the location of peak induced cortical current flow was variable. The High-Definition tDCS montage led to current flow restricted to within the ring perimeter across all subjects. The current flow profile across all subjects and montages was influenced by details in cortical gyri/sulci. Conclusion: This data suggests that subject specific modeling can facilitate consistent and more efficacious tDCS.


Brain Stimulation | 2016

Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016.

Pnina Grossman; Chris Thomas; Adantchede L. Zannou; Jimmy Jiang; Tatheer Adnan; Antonios P. Mourdoukoutas; Greg Kronberg; Dennis Q. Truong; Paulo S. Boggio; Andre R. Brunoni; Leigh Charvet; Felipe Fregni; Brita Fritsch; Bernadette T. Gillick; Roy H. Hamilton; Benjamin M. Hampstead; Ryan Jankord; Adam Kirton; Helena Knotkova; David Liebetanz; Anli Liu; Colleen K. Loo; Michael A. Nitsche; Janine Reis; Jessica D. Richardson; Alexander Rotenberg; Peter E. Turkeltaub; Adam J. Woods

This review updates and consolidates evidence on the safety of transcranial Direct Current Stimulation (tDCS). Safety is here operationally defined by, and limited to, the absence of evidence for a Serious Adverse Effect, the criteria for which are rigorously defined. This review adopts an evidence-based approach, based on an aggregation of experience from human trials, taking care not to confuse speculation on potential hazards or lack of data to refute such speculation with evidence for risk. Safety data from animal tests for tissue damage are reviewed with systematic consideration of translation to humans. Arbitrary safety considerations are avoided. Computational models are used to relate dose to brain exposure in humans and animals. We review relevant dose-response curves and dose metrics (e.g. current, duration, current density, charge, charge density) for meaningful safety standards. Special consideration is given to theoretically vulnerable populations including children and the elderly, subjects with mood disorders, epilepsy, stroke, implants, and home users. Evidence from relevant animal models indicates that brain injury by Direct Current Stimulation (DCS) occurs at predicted brain current densities (6.3-13 A/m(2)) that are over an order of magnitude above those produced by conventional tDCS. To date, the use of conventional tDCS protocols in human trials (≤40 min, ≤4 milliamperes, ≤7.2 Coulombs) has not produced any reports of a Serious Adverse Effect or irreversible injury across over 33,200 sessions and 1000 subjects with repeated sessions. This includes a wide variety of subjects, including persons from potentially vulnerable populations.


NeuroImage: Clinical | 2013

Computational modeling of transcranial direct current stimulation (tDCS) in obesity: Impact of head fat and dose guidelines☆

Dennis Q. Truong; Greta Magerowski; George L. Blackburn; Miguel Alonso-Alonso

Recent studies show that acute neuromodulation of the prefrontal cortex with transcranial direct current stimulation (tDCS) can decrease food craving, attentional bias to food, and actual food intake. These data suggest potential clinical applications for tDCS in the field of obesity. However, optimal stimulation parameters in obese individuals are uncertain. One fundamental concern is whether a thick, low-conductivity layer of subcutaneous fat around the head can affect current density distribution and require dose adjustments during tDCS administration. The aim of this study was to investigate the role of head fat on the distribution of current during tDCS and evaluate whether dosing standards for tDCS developed for adult individuals in general are adequate for the obese population. We used MRI-derived high-resolution computational models that delineated fat layers in five human heads from subjects with body mass index (BMI) ranging from “normal-lean” to “super-obese” (20.9 to 53.5 kg/m2). Data derived from these simulations suggest that head fat influences tDCS current density across the brain, but its relative contribution is small when other components of head anatomy are added. Current density variability between subjects does not appear to have a direct and/or simple link to BMI. These results indicate that guidelines for the use of tDCS can be extrapolated to obese subjects without sacrificing efficacy and/or treatment safety; the recommended standard parameters can lead to the delivery of adequate current flow to induce neuromodulation of brain activity in the obese population.


The Journal of Pain | 2013

Focal Modulation of the Primary Motor Cortex in Fibromyalgia Using 4! 1-Ring High-Definition Transcranial Direct Current Stimulation (HD-tDCS): Immediate and Delayed Analgesic Effects of Cathodal and Anodal Stimulation

Mauricio F. Villamar; Pakorn Wivatvongvana; Jayanton Patumanond; Dennis Q. Truong; Abhishek Datta; Felipe Fregni

UNLABELLED Fibromyalgia is a prevalent chronic pain syndrome characterized by altered pain and sensory processing in the central nervous system, which is often refractory to multiple therapeutic approaches. Given previous evidence supporting analgesic properties of noninvasive brain stimulation techniques in this condition, this study examined the effects of a novel, more focal method of transcranial direct current stimulation (tDCS), using the 4×1-ring configuration of high-definition (HD)-tDCS, on overall perceived pain in fibromyalgia patients. In this patient- and assessor-blind, sham-controlled, crossover trial, 18 patients were randomized to undergo single 20-minute sessions of anodal, cathodal, and sham HD-tDCS at 2.0 mA in a counterbalanced fashion. The center electrode was positioned over the left primary motor cortex. Pain scales and sensory testing were assessed before and after each intervention. A finite element method brain model was generated to predict electric field distribution. We found that both active stimulation conditions led to significant reduction in overall perceived pain as compared to sham. This effect occurred immediately after cathodal HD-tDCS and was evident for both anodal and cathodal HD-tDCS 30 minutes after stimulation. Furthermore, active anodal stimulation induced a significant bilateral increase in mechanical detection thresholds. These interventions proved well tolerated in our patient population. PERSPECTIVE 4×1-ring HD-tDCS, a novel noninvasive brain stimulation technique capable of more focal and targeted stimulation, provides significant reduction in overall perceived pain in fibromyalgia patients as compared to sham stimulation, irrespective of current polarity. This technique may have other applications in research and clinical settings, which should be further explored.


Expert Review of Medical Devices | 2014

Understanding tDCS effects in schizophrenia: a systematic review of clinical data and an integrated computation modeling analysis

Andre R. Brunoni; Pedro Shiozawa; Dennis Q. Truong; Daniel C. Javitt; Felipe Fregni

Although recent clinical studies using transcranial direct current stimulation (tDCS) for schizophrenia showed encouraging results, several tDCS montages were employed and their current flow pattern has not been investigated. We performed a systematic review to identify clinical tDCS studies in schizophrenia. We then applied computer head modeling analysis for prediction of current flow. Out of 41 references, we identified 12 relevant studies. The most employed montage was anode and cathode over the left dorsolateral prefrontal and temporoparietal cortex, respectively. Computational model analysis predicted activation and under-activation under the anode and the cathode, respectively, occurring in areas respectively associated with negative and positive symptoms. We also identified tDCS-induced electrical currents in cortical areas between the electrodes (frontoparietal network) and, to a lesser extent, in deeper structures involved in schizophrenia pathophysiology. Mechanisms of tDCS effects in schizophrenia and the usefulness of computer modeling techniques for planning tDCS trials in schizophrenia are discussed.


Arthritis & Rheumatism | 2015

Brief Report: Excitatory and Inhibitory Brain Metabolites as Targets of Motor Cortex Transcranial Direct Current Stimulation Therapy and Predictors of Its Efficacy in Fibromyalgia†

Bradley R. Foerster; Thiago D. Nascimento; Misty DeBoer; Marycatherine A. Bender; Indie C. Rice; Dennis Q. Truong; Daniel J. Clauw; Jon Kar Zubieta; Richard E. Harris; Alexandre F. DaSilva

Transcranial direct current stimulation (tDCS) has been shown to improve pain symptoms in fibromyalgia (FM), a central pain syndrome whose underlying mechanisms are not well understood. This study was undertaken to explore the neurochemical action of tDCS in the brain of patients with FM, using proton magnetic resonance spectroscopy (1H‐MRS).


Neurorehabilitation and Neural Repair | 2016

Intensity, Duration, and Location of High-Definition Transcranial Direct Current Stimulation for Tinnitus Relief.

Giriraj Singh Shekhawat; Frederick Sundram; Dennis Q. Truong; Dirk De Ridder; Cathy M. Stinear; David Welch; Grant D. Searchfield

Background and Objective. Tinnitus is the perception of a phantom sound. The aim of this study was to compare current intensity (center anode 1 mA and 2 mA), duration (10 minutes and 20 minutes), and location (left temporoparietal area [LTA] and dorsolateral prefrontal cortex [DLPFC]) using 4 × 1 high-definition transcranial direct current stimulation (HD-tDCS) for tinnitus reduction. Methods. Twenty-seven participants with chronic tinnitus (>2 years) and mean age of 53.5 years underwent 2 sessions of HD-tDCS of the LTA and DLPFC in a randomized order with a 1 week gap between site of stimulation. During each session, a combination of 4 different settings were used in increasing dose (1 mA, 10 minutes; 1 mA, 20 minutes; 2 mA, 10 minutes; and 2 mA, 20 minutes). The impact of different settings on tinnitus loudness and annoyance was documented. Results. Twenty-one participants (77.78%) reported a minimum of 1 point reduction on tinnitus loudness or annoyance scales. There were significant changes in loudness and annoyance for duration of stimulation, F(1, 26) = 10.08, P < .005, and current intensity, F(1, 26) = 14.24, P = .001. There was no interaction between the location, intensity, and duration of stimulation. Higher intensity (2 mA) and longer duration (20 minutes) of stimulation were more effective. Conclusions. A current intensity of 2 mA for 20-minute duration was the most effective setting used for tinnitus relief. The stimulation of the LTA and DLPFC were equally effective for suppressing tinnitus loudness and annoyance.


Brain Stimulation | 2014

Clinician Accessible Tools for GUI Computational Models of Transcranial Electrical Stimulation: BONSAI and SPHERES

Dennis Q. Truong; Mathias Hüber; Xihe Xie; Abhishek Datta; Asif Rahman; Lucas C. Parra; Jacek Dmochowski

Computational models of brain current flow during transcranial electrical stimulation (tES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), are increasingly used to understand and optimize clinical trials. We propose that broad dissemination requires a simple graphical user interface (GUI) software that allows users to explore and design montages in real-time, based on their own clinical/experimental experience and objectives. We introduce two complimentary open-source platforms for this purpose: BONSAI and SPHERES. BONSAI is a web (cloud) based application (available at neuralengr.com/bonsai) that can be accessed through any flash-supported browser interface. SPHERES (available at neuralengr.com/spheres) is a stand-alone GUI application that allow consideration of arbitrary montages on a concentric sphere model by leveraging an analytical solution. These open-source tES modeling platforms are designed go be upgraded and enhanced. Trade-offs between open-access approaches that balance ease of access, speed, and flexibility are discussed.


Frontiers in Neuroanatomy | 2015

State-of-art neuroanatomical target analysis of high-definition and conventional tDCS montages used for migraine and pain control

Alexandre F. DaSilva; Dennis Q. Truong; Marcos F. DosSantos; Rebecca L. Toback; Abhishek Datta

Although transcranial direct current stimulation (tDCS) studies promise to modulate cortical regions associated with pain, the electric current produced usually spreads beyond the area of the electrodes’ placement. Using a forward-model analysis, this study compared the neuroanatomic location and strength of the predicted electric current peaks, at cortical and subcortical levels, induced by conventional and High-Definition-tDCS (HD-tDCS) montages developed for migraine and other chronic pain disorders. The electrodes were positioned in accordance with the 10–20 or 10–10 electroencephalogram (EEG) landmarks: motor cortex-supraorbital (M1-SO, anode and cathode over C3 and Fp2, respectively), dorsolateral prefrontal cortex (PFC) bilateral (DLPFC, anode over F3, cathode over F4), vertex-occipital cortex (anode over Cz and cathode over Oz), HD-tDCS 4 × 1 (one anode on C3, and four cathodes over Cz, F3, T7, and P3) and HD-tDCS 2 × 2 (two anodes over C3/C5 and two cathodes over FC3/FC5). M1-SO produced a large current flow in the PFC. Peaks of current flow also occurred in deeper brain structures, such as the cingulate cortex, insula, thalamus and brainstem. The same structures received significant amount of current with Cz-Oz and DLPFC tDCS. However, there were differences in the current flow to outer cortical regions. The visual cortex, cingulate and thalamus received the majority of the current flow with the Cz-Oz, while the anterior parts of the superior and middle frontal gyri displayed an intense amount of current with DLPFC montage. HD-tDCS montages enhanced the focality, producing peaks of current in subcortical areas at negligible levels. This study provides novel information regarding the neuroanatomical distribution and strength of the electric current using several tDCS montages applied for migraine and pain control. Such information may help clinicians and researchers in deciding the most appropriate tDCS montage to treat each pain disorder.


Journal of Neurophysiology | 2015

Transspinal direct current stimulation immediately modifies motor cortex sensorimotor maps

Weiguo Song; Dennis Q. Truong; John H. Martin

Motor cortex (MCX) motor representation reorganization occurs after injury, learning, and different long-term stimulation paradigms. The neuromodulatory approach of transspinal direct current stimulation (tsDCS) has been used to promote evoked cortical motor responses. In the present study, we used cathodal tsDCS (c-tsDCS) of the rat cervical cord to determine if spinal cord activation can modify the MCX forelimb motor map. We used a finite-element method model based on coregistered high-resolution rat MRI and microcomputed tomography imaging data to predict spinal current density to target stimulation to the caudal cervical enlargement. We examined the effects of cathodal and anodal tsDCS on the H-reflex and c-tsDCS on responses evoked by intracortical microstimulation (ICMS). To determine if cervical c-tsDCS also modified MCX somatic sensory processing, we examined sensory evoked potentials (SEPs) produced by wrist electrical stimulation and induced changes in ongoing activity. Cervical c-tsDCS enhanced the H-reflex, and anodal depressed the H-reflex. Using cathodal stimulation to examine cortical effects, we found that cervical c-tsDCS immediately modified the forelimb MCX motor map, with decreased thresholds and an expanded area. c-tsDCS also increased SEP amplitude in the MCX. The magnitude of changes produced by c-tsDCS were greater on the motor than sensory response. Cervical c-tsDCS more strongly enhanced forelimb than hindlimb motor representation and had no effect on vibrissal representation. The finite-element model indicated current density localized to caudal cervical segments, informing forelimb motor selectivity. Our results suggest that c-tsDCS augments spinal excitability in a spatially selective manner and may improve voluntary motor function through MCX representational plasticity.

Collaboration


Dive into the Dennis Q. Truong's collaboration.

Top Co-Authors

Avatar

Abhishek Datta

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felipe Fregni

Spaulding Rehabilitation Hospital

View shared research outputs
Top Co-Authors

Avatar

Lucas C. Parra

City College of New York

View shared research outputs
Top Co-Authors

Avatar

Preet Minhas

City College of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devin Adair

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helena Knotkova

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge