Dennis R. Schaart
Delft University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dennis R. Schaart.
Physics in Medicine and Biology | 2004
Sébastien Jan; Giovanni Santin; Daniel Strul; Steven Staelens; Karine Assié; D. Autret; S. Avner; R. Barbier; Manuel Bardiès; Peter M. Bloomfield; David Brasse; Vincent Breton; Peter Bruyndonckx; Irène Buvat; Arion F. Chatziioannou; Yong Choi; Yong Hyun Chung; Claude Comtat; D. Donnarieix; Ludovic Ferrer; Stephen J. Glick; C. J. Groiselle; D. Guez; P. F. Honore; S. Kerhoas-Cavata; A Kirov; Vandana Kohli; Michel Koole; M. Krieguer; D.J. van der Laan
Monte Carlo simulation is an essential tool in emission tomography that can assist in the design of new medical imaging devices, the optimization of acquisition protocols and the development or assessment of image reconstruction algorithms and correction techniques. GATE, the Geant4 Application for Tomographic Emission, encapsulates the Geant4 libraries to achieve a modular, versatile, scripted simulation toolkit adapted to the field of nuclear medicine. In particular, GATE allows the description of time-dependent phenomena such as source or detector movement, and source decay kinetics. This feature makes it possible to simulate time curves under realistic acquisition conditions and to test dynamic reconstruction algorithms. This paper gives a detailed description of the design and development of GATE by the OpenGATE collaboration, whose continuing objective is to improve, document and validate GATE by simulating commercially available imaging systems for PET and SPECT. Large effort is also invested in the ability and the flexibility to model novel detection systems or systems still under design. A public release of GATE licensed under the GNU Lesser General Public License can be downloaded at http:/www-lphe.epfl.ch/GATE/. Two benchmarks developed for PET and SPECT to test the installation of GATE and to serve as a tutorial for the users are presented. Extensive validation of the GATE simulation platform has been started, comparing simulations and measurements on commercially available acquisition systems. References to those results are listed. The future prospects towards the gridification of GATE and its extension to other domains such as dosimetry are also discussed.
Physics in Medicine and Biology | 2011
Sébastien Jan; D. Benoit; E. Becheva; T. Carlier; F. Cassol; Patrice Descourt; Thibault Frisson; Loïc Grevillot; Laurent Guigues; Lydia Maigne; C. Morel; Yann Perrot; Niklas S. Rehfeld; David Sarrut; Dennis R. Schaart; Simon Stute; U. Pietrzyk; Dimitris Visvikis; Nabil Zahra; Irène Buvat
GATE (Geant4 Application for Emission Tomography) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. Dedicated to the modelling of planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET) acquisitions, this platform is widely used to assist PET and SPECT research. A recent extension of this platform, released by the OpenGATE collaboration as GATE V6, now also enables modelling of x-ray computed tomography and radiation therapy experiments. This paper presents an overview of the main additions and improvements implemented in GATE since the publication of the initial GATE paper (Jan et al 2004 Phys. Med. Biol. 49 4543-61). This includes new models available in GATE to simulate optical and hadronic processes, novelties in modelling tracer, organ or detector motion, new options for speeding up GATE simulations, examples illustrating the use of GATE V6 in radiotherapy applications and CT simulations, and preliminary results regarding the validation of GATE V6 for radiation therapy applications. Upon completion of extensive validation studies, GATE is expected to become a valuable tool for simulations involving both radiotherapy and imaging.
Physics in Medicine and Biology | 2009
Dennis R. Schaart; Herman T. van Dam; Stefan Seifert; Ruud Vinke; Peter Dendooven; Herbert Löhner; Freek J. Beekman
Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e.g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanche photodiodes. Here we present a novel detector design with DOI correction, in which a position-sensitive SiPM array is used to read out a monolithic scintillator. Initial characterization of a prototype detector consisting of a 4 x 4 SiPM array coupled to either the front or back surface of a 13.2 mm x 13.2 mm x 10 mm LYSO:Ce(3+) crystal shows that front-side readout results in significantly better performance than conventional back-side readout. Spatial resolutions <1.6 mm full-width-at-half-maximum (FWHM) were measured at the detector centre in response to an approximately 0.54 mm FWHM diameter test beam. Hardly any resolution losses were observed at angles of incidence up to 45 degrees , demonstrating excellent DOI correction. About 14% FWHM energy resolution was obtained. The timing resolution, measured in coincidence with a BaF(2) detector, equals 960 ps FWHM.
Physics in Medicine and Biology | 2010
Dennis R. Schaart; Stefan Seifert; Ruud Vinke; Herman T. van Dam; Peter Dendooven; Herbert Löhner; Freek J. Beekman
The use of time-of-flight (TOF) information in positron emission tomography (PET) enables significant improvement in image noise properties and, therefore, lesion detection. Silicon photomultipliers (SiPMs) are solid-state photosensors that have several advantages over photomultiplier tubes (PMTs). SiPMs are small, essentially transparent to 511 keV gamma rays and insensitive to magnetic fields. This enables novel detector designs aimed at e.g. compactness, high resolution, depth-of-interaction (DOI) correction and MRI compatibility. The goal of the present work is to study the timing performance of SiPMs in combination with LaBr(3):Ce(5%), a relatively new scintillator with promising characteristics for TOF-PET. Measurements were performed with two, bare, 3 mm x 3 mm x 5 mm LaBr(3):Ce(5%) crystals, each coupled to a 3 mm x 3 mm SiPM. Using a (22)Na point source placed at various positions in between the two detectors, a coincidence resolving time (CRT) of approximately 100 ps FWHM for 511 keV annihilation photon pairs was achieved, corresponding to a TOF positioning resolution of approximately 15 mm FWHM. At the same time, pulse height spectra with well-resolved full-energy peaks were obtained. To our knowledge this is the best CRT reported for SiPM-based scintillation detectors to date. It is concluded that SiPM-based scintillation detectors can provide timing resolutions at least as good as detectors based on PMTs.
Physics in Medicine and Biology | 2012
Stefan Seifert; Herman T. van Dam; Dennis R. Schaart
The timing performance of scintillation detectors is ultimately limited by photon counting statistics. In fact, photon counting statistics form a dominant contribution to the overall timing resolution of many state-of-the-art detectors. A common approach to investigate this contribution is to calculate the variance in the registration times of individual scintillation photons within the photosensor. However, in general the single-photon variance is not equal to the intrinsic limit on the timing resolution, since in principle one can make use of the timing information carried by all photons detected. In this work, the Cramér-Rao lower bound on the timing resolution of a scintillation detector, based on the information contained in the full set of registered photons, is calculated. The results appear to be in good agreement with trends observed in the literature. Furthermore, it is shown that the timestamp obtained from any single scintillation photon never yields the optimum timing resolution for realistic scintillation detectors. Yet, it appears that the intrinsic timing resolution limit can be approached closely by making use of the timestamps from a relatively small number of photons emitted during the initial part of the scintillation pulse.
Physics in Medicine and Biology | 2009
M.C. Maas; Dennis R. Schaart; D.J. van der Laan; Peter Bruyndonckx; C. Lemaitre; Freek J. Beekman; Carel W. E. van Eijk
We developed positron emission tomography (PET) detectors based on monolithic scintillation crystals and position-sensitive light sensors. Intrinsic depth-of-interaction (DOI) correction is achieved by deriving the entry points of annihilation photons on the front surface of the crystal from the light sensor signals. Here we characterize the next generation of these detectors, consisting of a 20 mm thick rectangular or trapezoidal LYSO:Ce crystal read out on the front and the back (double-sided readout, DSR) by Hamamatsu S8550SPL avalanche photodiode (APD) arrays optimized for DSR. The full width at half maximum (FWHM) of the detector point-spread function (PSF) obtained with a rectangular crystal at normal incidence equals approximately 1.05 mm at the detector centre, after correction for the approximately 0.9 mm diameter test beam of annihilation photons. Resolution losses of several tenths of a mm occur near the crystal edges. Furthermore, trapezoidal crystals perform almost equally well as rectangular ones, while improving system sensitivity. Due to the highly accurate DOI correction of all detectors, the spatial resolution remains essentially constant for angles of incidence of up to at least 30 degrees . Energy resolutions of approximately 11% FWHM are measured, with a fraction of events of up to 75% in the full-energy peak. The coincidence timing resolution is estimated to be 2.8 ns FWHM. The good spatial, energy and timing resolutions, together with the excellent DOI correction and high detection efficiency of our detectors, are expected to facilitate high and uniform PET system resolution.
IEEE Transactions on Nuclear Science | 2012
Stefan Seifert; H.T. van Dam; Ruud Vinke; Peter Dendooven; H. Löhner; Freek J. Beekman; Dennis R. Schaart
Silicon photomultipliers (SiPMs) are expected to replace photomultiplier tubes (PMTs) in several applications that require scintillation detectors with excellent timing resolution, such as time-of-flight positron emission tomography (TOF-PET). However, the theory about the timing resolution of SiPM-based detectors is not yet fully understood. Here we propose a comprehensive statistical model to predict the timing resolution of SiPM-based scintillation detectors. It incorporates the relevant SiPM-related parameters (viz. the single cell electronic response, the single cell gain, the charge carrier transit time spread, and crosstalk) as well as the scintillation pulse rise and decay times, light yield, and energy resolution. It is shown that the proposed model reduces to the well-established Hyman model for timing with PMTs if the number of primary triggers (photoelectrons in case of a PMT) is Poisson distributed and crosstalk and electronic noise are negligible. The model predictions are validated by measurements of the coincidence resolving times (CRT) for 511 keV photons of two identical detectors as a function of SiPM bias voltage, for two different kinds of scintillators, namely LYSO:Ce and LaBr3:5%Ce. CRTs as low as 138 ps ± 2 ps FWHM for LYSO:Ce and 95 ps ± 3 ps FWHM for LaBr3:5%Ce were obtained, demonstrating the outstanding timing potential of SiPM-based scintillation detectors. These values were found to be in good agreement with the predicted CRTs of 140 ps FWHM and 95 ps FWHM, respectively. Utilizing the proposed model, it can be shown that the CRTs obtained in our experiments are mainly limited by photon statistics while crosstalk, electronic noise and signal bandwidth have relatively little influence.
IEEE Transactions on Nuclear Science | 2009
Stefan Seifert; H.T. van Dam; Jan Huizenga; Ruud Vinke; Peter Dendooven; H. Löhner; Dennis R. Schaart
In a silicon photomultiplier (SiPM), also referred to as multi-pixel photon counter (MPPC), many Geiger-mode avalanche photodiodes (GM-APDs) are connected in parallel so as to combine the photon counting capabilities of each of these so-called microcells into a proportional light sensor. The discharge of a single microcell is relatively well understood and electronic models exist to simulate this process. In this paper we introduce an extended model that is able to simulate the simultaneous discharge of multiple cells. This model is used to predict the SiPM signal in response to fast light pulses as a function of the number of fired cells, taking into account the influence of the input impedance of the SiPM preamplifier. The model predicts that the electronic signal is not proportional to the number of fired cells if the preamplifier input impedance is not zero. This effect becomes more important for SiPMs with lower parasitic capacitance (which otherwise is a favorable property). The model is validated by comparing its predictions to experimental data obtained with two different SiPMs (Hamamatsu S10362-11-25u and Hamamatsu S10362-33-25c) illuminated with ps laser pulses. The experimental results are in good agreement with the model predictions.
Physics in Medicine and Biology | 2002
Dennis R. Schaart; J T M Jansen; J. Zoetelief; Piet F. A. de Leege
The condensed-history electron transport algorithms in the Monte Carlo code MCNP4C are derived from ITS 3.0, which is a well-validated code for coupled electron-photon simulations. This, combined with its user-friendliness and versatility, makes MCNP4C a promising code for medical physics applications. Such applications, however, require a high degree of accuracy. In this work, MCNP4C electron depth-dose distributions in water are compared with published ITS 3.0 results. The influences of voxel size, substeps and choice of electron energy indexing algorithm are investigated at incident energies between 100 keV and 20 MeV. Furthermore, previously published dose measurements for seven beta emitters are simulated. Since MCNP4C does not allow tally segmentation with the *F8 energy deposition tally, even a homogeneous phantom must be subdivided in cells to calculate the distribution of dose. The repeated interruption of the electron tracks at the cell boundaries significantly affects the electron transport. An electron track length estimator of absorbed dose is described which allows tally segmentation. In combination with the ITS electron energy indexing algorithm, this estimator appears to reproduce ITS 3.0 and experimental results well. If, however, cell boundaries are used instead of segments, or if the MCNP indexing algorithm is applied, the agreement is considerably worse.
IEEE Transactions on Nuclear Science | 2010
H.T. van Dam; Stefan Seifert; R Vinke; D Dendooven; H Löhner; Freek J. Beekman; Dennis R. Schaart
The response of a silicon photomultiplier (SiPM) to optical signals is inherently nonproportional due to saturation, afterpulsing, and crosstalk. Existing models of the SiPM response do not account for all of these effects, and therefore, these models are not sufficiently accurate for many applications. In this work, a comprehensive model of the SiPM response is developed that is generally applicable to exponentially decaying light pulses and that can be simplified in the case of very short (e.g., laser) light pulses. The model accounts for the total number and the temporal distribution of the incident photons as well as for the relevant SiPM parameters, viz. the recovery time, afterpulsing, crosstalk, and their cross correlations. The model is shown to correspond well with measurements on a SiPM-based scintillation detector. Furthermore, it is shown to be in agreement with several cases for which the SiPM response is known a priori. Having thus validated the model, its use is demonstrated by predicting the response of the Hamamatsu multipixel photon counter (MPPC) S10362-33-050C SiPM to several different scintillators.