Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dennis Revie is active.

Publication


Featured researches published by Dennis Revie.


CBE- Life Sciences Education | 2010

The Genomics Education Partnership: Successful Integration of Research into Laboratory Classes at a Diverse Group of Undergraduate Institutions

Christopher D. Shaffer; Consuelo J. Alvarez; Cheryl Bailey; Daron C. Barnard; Satish C. Bhalla; Chitra Chandrasekaran; Vidya Chandrasekaran; Hui-Min Chung; Douglas R Dorer; Chunguang Du; Todd T. Eckdahl; Jeff L Poet; Donald Frohlich; Anya Goodman; Yuying Gosser; Charles Hauser; Laura L. Mays Hoopes; Diana Johnson; Christopher J. Jones; Marian Kaehler; Nighat P. Kokan; Olga R Kopp; Gary Kuleck; Gerard P. McNeil; Robert Moss; Jennifer L Myka; Alexis Nagengast; Robert W. Morris; Paul Overvoorde; Elizabeth Shoop

Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students.


Science | 2008

Genomics Education Partnership

David Lopatto; Consuelo J. Alvarez; Daron C. Barnard; Chitra Chandrasekaran; Hui-Min Chung; Chunguang Du; Todd T. Eckdahl; Anya Goodman; Charles Hauser; Christopher J. Jones; Olga R Kopp; Gary Kuleck; Gerard P. McNeil; Robert W. Morris; J. L. Myka; Alexis Nagengast; Paul Overvoorde; Jeffrey L. Poet; Kelynne E. Reed; G. Regisford; Dennis Revie; Anne G. Rosenwald; Kenneth Saville; Mary Shaw; Gary R. Skuse; Christopher D. Smith; Mary A. Smith; Mary Spratt; Joyce Stamm; Jeffrey S. Thompson

The Genomics Education Partnership offers an inclusive model for undergraduate research experiences, with students pooling their work to contribute to international databases.


Virology Journal | 2011

Human cell types important for Hepatitis C Virus replication in vivo and in vitro. Old assertions and current evidence

Dennis Revie; Syed Zaki Salahuddin

Hepatitis C Virus (HCV) is a single stranded RNA virus which produces negative strand RNA as a replicative intermediate. We analyzed 75 RT-PCR studies that tested for negative strand HCV RNA in liver and other human tissues. 85% of the studies that investigated extrahepatic replication of HCV found one or more samples positive for replicative RNA. Studies using in situ hybridization, immunofluorescence, immunohistochemistry, and quasispecies analysis also demonstrated the presence of replicating HCV in various extrahepatic human tissues, and provide evidence that HCV replicates in macrophages, B cells, T cells, and other extrahepatic tissues. We also analyzed both short term and long term in vitro systems used to culture HCV. These systems vary in their purposes and methods, but long term culturing of HCV in B cells, T cells, and other cell types has been used to analyze replication. It is therefore now possible to study HIV-HCV co-infections and HCV replication in vitro.


CBE- Life Sciences Education | 2014

A Course-Based Research Experience: How Benefits Change with Increased Investment in Instructional Time

Christopher D. Shaffer; Consuelo J. Alvarez; April E. Bednarski; David Dunbar; Anya Goodman; Catherine Reinke; Anne G. Rosenwald; Michael J. Wolyniak; Cheryl Bailey; Daron C. Barnard; Christopher Bazinet; Dale L. Beach; James E. J. Bedard; Satish C. Bhalla; John M. Braverman; Martin G. Burg; Vidya Chandrasekaran; Hui-Min Chung; Kari Clase; Randall J. DeJong; Justin R. DiAngelo; Chunguang Du; Todd T. Eckdahl; Heather L. Eisler; Julia A. Emerson; Amy Frary; Donald Frohlich; Yuying Gosser; Shubha Govind; Adam Haberman

While course-based research in genomics can generate both knowledge gains and a greater appreciation for how science is done, a significant investment of course time is required to enable students to show gains commensurate to a summer research experience. Nonetheless, this is a very cost-effective way to reach larger numbers of students.


CBE- Life Sciences Education | 2014

A Central Support System Can Facilitate Implementation and Sustainability of a Classroom-Based Undergraduate Research Experience (CURE) in Genomics

David Lopatto; Charles Hauser; Christopher J. Jones; Don W. Paetkau; Vidya Chandrasekaran; David Dunbar; Christy MacKinnon; Joyce Stamm; Consuelo J. Alvarez; Daron C. Barnard; James E. J. Bedard; April E. Bednarski; Satish C. Bhalla; John M. Braverman; Martin G. Burg; Hui-Min Chung; Randall J. DeJong; Justin R. DiAngelo; Chunguang Du; Todd T. Eckdahl; Julia A. Emerson; Amy Frary; Donald Frohlich; Anya Goodman; Yuying Gosser; Shubha Govind; Adam Haberman; Amy T. Hark; Arlene J. Hoogewerf; Diana Johnson

There have been numerous calls to engage students in science as science is done. A survey of 90-plus faculty members explores barriers and incentives when developing a research-based genomics course. The results indicate that a central core supporting a national experiment can help overcome local obstacles.


Virology Journal | 2005

Transmission of human hepatitis C virus from patients in secondary cells for long term culture.

Dennis Revie; Ravi Braich; David Bayles; Nickolas Chelyapov; Rafat Khan; Cheryl Geer; Richard Reisman; Ann S Kelley; John G Prichard; S Zaki Salahuddin

Infection by human hepatitis C virus (HCV) is the principal cause of post-transfusion hepatitis and chronic liver diseases worldwide. A reliable in vitro culture system for the isolation and analysis of this virus is not currently available, and, as a consequence, HCV pathogenesis is poorly understood. We report here the first robust in vitro system for the isolation and propagation of HCV from infected donor blood. This system involves infecting freshly prepared macrophages with HCV and then transmission of macrophage-adapted virus into freshly immortalized B-cells from human fetal cord blood. Using this system, newly isolated HCV have been replicated in vitro in continuous cultures for over 130 weeks. These isolates were also transmitted by cell-free methods into different cell types, including B-cells, T-cells and neuronal precursor cells. These secondarily infected cells also produced in vitro transmissible infectious virus. Replication of HCV-RNA was validated by RT-PCR analysis and by in situ hybridization. Although nucleic acid sequencing of the HCV isolate reported here indicates that the isolate is probably of type 1a, other HCV types have also been isolated using this system. Western blot analysis shows the synthesis of major HCV structural proteins. We present here, for the first time, a method for productively growing HCV in vitro for prolonged periods of time. This method allows studies related to understanding the replication process, viral pathogenesis, and the development of anti-HCV drugs and vaccines.


World Journal of Gastroenterology | 2014

Role of macrophages and monocytes in hepatitis C virus infections

Dennis Revie; Syed Zaki Salahuddin

A number of studies conducted over many years have shown that hepatitis C virus (HCV) can infect a variety of cell types. In vivo infection of monocytes, macrophages, and dendritic cells by HCV has been frequently shown by a number of researchers. These studies have demonstrated replication of HCV by detecting the presence of both negative genomic strands and a variety of non-structural HCV proteins in infected cells. In addition, analyses of genome sequences have also shown that different cell types can harbor different HCV variants. Investigators have also done preliminary studies of which cellular genes are affected by HCV infection, but there have not yet been a sufficient number of these studies to understand the effects of infection on these cells. Analyses of in vitro HCV replication have shown that monocytes, macrophages and dendritic cells can be infected by HCV from patient sera or plasma. These studies suggest that entry and cellular locations may vary between different cell types. Some studies suggest that macrophages may preferentially allow HCV genotype 1 to replicate, but macrophages do not appear to select particular hypervariable regions. Overall, these studies agree with a model where monocytes and macrophages act as an amplification system, in which these cells are infected and show few cytopathic effects, but continuously produce HCV. This allows them to produce virus over an extended time and allows its spread to other cell types.


Virology Journal | 2006

Discovery of significant variants containing large deletions in the 5'UTR of human hepatitis C virus (HCV).

Dennis Revie; Michael O Alberti; Ravi Braich; David Bayles; John G Prichard; S Zaki Salahuddin


Virology Journal | 2007

The simultaneous presence and expression of human hepatitis C virus (HCV), human herpesvirus-6 (HHV-6), and human immunodeficiency virus-1 (HIV-1) in a single human T-cell

S Zaki Salahuddin; Katherine A Snyder; Andre Godwin; Renu Grewal; John G Prichard; Ann S Kelley; Dennis Revie


Virology Journal | 2006

Analysis of in vitro replicated human hepatitis C virus (HCV) for the determination of genotypes and quasispecies.

Dennis Revie; Michael O Alberti; Ravi Braich; Nickolas Chelyapov; David Bayles; John G Prichard; S Zaki Salahuddin

Collaboration


Dive into the Dennis Revie's collaboration.

Top Co-Authors

Avatar

Anya Goodman

California Polytechnic State University

View shared research outputs
Top Co-Authors

Avatar

Chunguang Du

Montclair State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daron C. Barnard

Worcester State University

View shared research outputs
Top Co-Authors

Avatar

Hui-Min Chung

University of West Florida

View shared research outputs
Top Co-Authors

Avatar

Todd T. Eckdahl

Missouri Western State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ravi Braich

Alnylam Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

Satish C. Bhalla

Johnson C. Smith University

View shared research outputs
Researchain Logo
Decentralizing Knowledge