Dennis W. Hwang
National Chung Cheng University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dennis W. Hwang.
Journal of Chemical Physics | 2000
Steven A. Harich; X. Yang; Dennis W. Hwang; Jim J. Lin; Xueming Yang; Richard N. Dixon
Photodissociation dynamics of H2O at 121.6 nm have been studied using the H atom Rydberg “tagging” time-of-flight technique and by quasiclassical trajectory (QCT) calculations. Product kinetic energy distributions and angular distributions have been measured. From these distributions, rovibronic distributions of the OH radical product as well as the state resolved angular anisotropy parameters were determined. The dissociation energy D00(H–OH) is determined to be 41151±5 cm−1. Two clear alternations in the OH(X,v=0) rotational distribution have been observed, with each alternation corresponding to an oscillation in the anisotropy distribution. These oscillations had been attributed to the dynamical interference between the two conical intersection pathways. Further theoretical modeling in this work strongly supports this argument. Very highly vibrationally excited OH(X) products (up to v=9) have also been observed. These are ascribed to interconversion of H–O–H bending (H–H vibration) and O–H vibration in...
Journal of Chemical Physics | 1999
A.H.H. Chang; Dennis W. Hwang; X. Yang; Alexander M. Mebel; S. H. Lin; Yuan T. Lee
The energy partition in the products of ethylene photodissociation (including C2H4, C2D4, D2CCH2, cis- and trans-HDCCDH) at 193 and 157 nm and the rate constants of H loss channels were computed based on ab initio ethylene ground-state surfaces of which most were reported earlier. In the calculations of the energy partitions, a simple model was used in which the excess energy above the transition state is distributed statistically and the energy released by the exit barrier is described by the modified impulsive model. The rate constants of the ethylene H(D) elimination were calculated according to the variational RRKM (Rice–Ramsperger–Kassel–Marcus) theory, and the RRKM rate constants with tunneling corrections were obtained for vinyl decomposition at 193 nm. In contrast with previous conclusions drawn by LIF (laser induced fluorescence) studies, the rate constant calculations suggest that the H loss may be a nonstatistical process. However, the computed variational transition states for H loss appear re...
Physical Chemistry Chemical Physics | 2013
Chu-Jung Hsieh; Yu-Wen Chen; Dennis W. Hwang
Biological membranes are complex structures composed of various lipids and proteins. Different membrane compositions affect viscoelastic and hydrodynamic properties of membranes, which are critical to their functions. Lipid bilayer vesicles inserted by cholesterol not only enhance membrane surface motional behavior but also strengthen vesicle stability. Cholesterol-rich vesicles are similar to cell membranes in structure and composition. Therefore, cholesterol-rich vesicles can represent a typical model for studying membrane dynamics and functions. In this study, nuclear magnetic relaxation dispersion was used to investigate the detailed molecular dynamics of membrane differences between vesicles and cholesterol vesicles in the temperature range of 278-298 K. Vesicles of two different sizes were prepared. The effect of cholesterol mainly affected the order fluctuation of membranes and the diffusional motion of lipid molecules. In addition, phase variations were also observed in liposomes that contained cholesterol from analyses of the distances between lipid molecules.
Journal of Physical Chemistry C | 2017
Dudari B. Burueva; Alexey S. Romanov; Oleg G. Salnikov; Yu-Wen Chen; Danila A. Barskiy; Eduard Y. Chekmenev; Dennis W. Hwang; Kirill V. Kovtunov; Igor V. Koptyug
Hyperpolarized (HP) propane produced by the parahydrogen-induced polarization (PHIP) technique has been recently introduced as a promising contrast agent for functional lung magnetic resonance (MR) imaging. However, its short lifetime due to a spin–lattice relaxation time T1 of less than 1 s in the gas phase is a significant translational challenge for its potential biomedical applications. The previously demonstrated approach for extending the lifetime of the HP propane state through long-lived spin states allows the HP propane lifetime to be increased by a factor of ∼3. Here, we demonstrate that a remarkable increase in the propane hyperpolarization decay time at high magnetic field (7.1 T) can be achieved by its dissolution in deuterated organic solvents (acetone-d6 or methanol-d4). The approximate values of the HP decay time for propane dissolved in acetone-d6 are 35.1 and 28.6 s for the CH2 group and the CH3 group, respectively (similar values were obtained for propane dissolved in methanol-d4), which are ∼50 times larger than the gaseous propane T1 value. Furthermore, we show that it is possible to retrieve HP propane from solution to the gas phase with the preservation of hyperpolarization.
Journal of Chemical Physics | 2013
Yu-Wen Chen; Chu-Jung Hsieh; Chao-Min Lin; Dennis W. Hwang
Superparamagnetic iron oxide (SPIO) nanoparticles have been introduced as contrast agents for clinical applications in magnetic resonance imaging. Recently, SPIO has been also used for tracking cells. However, NMR relaxation of water molecules behaves differently in a SPIO solution and SPIO-loaded cells. In this study, we used water-in-oil-in-water double emulsions to mimic cellular environments. The MR relaxation induced by the SPIO-loaded vesicles and SPIO solution indicates that T(2)* is sensitive to the iron concentration alone, and the behavior was very similar in both SPIO-loaded vesicles and SPIO solution. However, T(2) relaxation of water in SPIO-loaded vesicles was faster than that in a SPIO solution. In addition, the contribution of water inside and outside the vesicles was clarified by replacing H(2)O with D(2)O, and water inside the vesicles was found to cause a nonlinear iron concentration dependency. The studied dilution revealed that vesicle aggregation undergoes a structural transition upon dilution by a certain amount of water. R(2)* relaxation is sensitive to this structural change and shows an obvious nonlinear iron concentration dependency when the SPIO loading is sufficiently high. Random walk simulations demonstrated that in the assumed model, the vesicles aggregate structures causing the differences between R(2)* and R(2) relaxation of water in vesicles in the presence of SPIO particles.
Molecular Medicine | 2016
Chi-Chen Lu; Cheng-Huang Shen; Chia-Bin Chang; Hsiao-Yen Hsieh; Jiann-Der Wu; Ling-Huei Tseng; Dennis W. Hwang; Syue-Yi Chen; Shu-Fen Wu; Michael W.Y. Chan; Cheng-Da Hsu
Alternative intravesical agents are required to overcome the side effects currently associated with the treatment of bladder cancer. This study used an orthotopic bladder cancer mouse model to evaluate Guizhi Fuling Wan (GFW) as an intravesical agent. The effects of GFW were compared with those of mitomycin-C (Mito-C) and bacille Calmette-Guérin (BCG). We began by evaluating the response of the mouse bladder cancer cell line MB49 to GFW treatment, with regard to cell viability, cell cycle progression and apoptosis. MB49 cells were subsequently implanted into the urothelial walls of the bladder in female C57BL/6 mice. The success of the model was confirmed by the appearance of hematuria and tumor growth in the bladder. Intravesical chemotherapy was administered in accordance with a published protocol. In vitro data revealed that GFW arrested MB49 cell cycle in the G0/G1 phase, resulting in the suppression of cell proliferation and induced apoptosis. One possible mechanism underlying these effects is an increase in intracellular reactive oxygen species (ROS) levels leading to the activation of ataxia telangiectasia-mutated (ATM)/checkpoint kinase 2 (CHK2) and ATM/P53 pathways, thereby mediating cell cycle progression and apoptosis, respectively. This mouse model demonstrates the effectiveness of GFW in the tumor growth, with results comparable to those achieved by using BCG and Mito-C. Furthermore, GFW was shown to cause only mild hematuria. The low toxicity of the compound was confirmed by a complete lack of lesions on bladder tissue, even after 10 consecutive treatments using high concentrations of GFW. These results demonstrate the potential of GFW for the intravesical therapy of bladder cancer.
Magnetic Resonance in Medicine | 2014
Yu-Wen Chen; Chou-Hsiung Hsu; Dennis W. Hwang
The goal of this study is to develop novel MR contrast by frequency lock‐in technique.
Magnetic Resonance Imaging | 2011
Wei-Hao Chang; Chau-Yi Chung; Jyh-Horng Chen; Dennis W. Hwang; Chao-Hsiung Hsu; Ching Yao; Lian-Pin Hwang
This work presents a simple design for a mobile single-sided nuclear magnetic resonance (NMR) apparatus with a relatively homogeneous static magnetic field (B(0)) distribution. In the proposed design, the B(0) magnetic field of the apparatus is synthesized using only two permanent magnet blocks, i.e., a cube (main) magnet and a small shim magnet placed above the main magnet. The magnetic flux of the shim magnet partially cancels out that of the main magnet, subsequently creating a smooth B(0) profile above the shim magnet where low-resolution NMR experiments are performed. Compared with many previously published designs, this straightforward design simplifies the construction of the apparatus and simultaneously generates a B(0) field parallel to the apparatus surface, allowing the use of a simple loop-type radiofrequency (RF) coil. Additionally, an apparatus prototype is constructed according to the proposed design. Weighing only 1.8 kg, the constructed apparatus has a compact structure and can be held in the palm of a hand. The apparatus generates a B(0) strength of about 0.0746 T. Within a B(0) field deviation of 3 mT, the region with a relatively homogeneous B(0) distribution extends to about 11 mm above the shim magnet. The proposed apparatus can detect a clear Hahn echo or Carr-Purcell-Meiboom-Gill (CPMG) echoes of a pencil eraser block or a bottle of oil placed on the apparatus in 5 s with signal averaging using an RF transmitter power of only 19 W; the detection range of the apparatus exceeds 6 mm. The strength of the residual static magnetic field gradient of the apparatus is roughly estimated at 0.58 T/m. Applying different CPMG echo spacings in this residual static gradient leads to various transverse relaxation time (T(2)) contrasts for liquids with distinct viscosities such as water and oil. Two nondestructive inspection applications of the apparatus, including correlating the concentrations of magnetic nanoparticle solutions with their measured transverse relaxation rates (R(2)) and monitoring the outgassing from an opened bottle of oxygen-supersaturated water by measuring its longitudinal relaxation rate (R(1)), are also demonstrated.
ChemistryOpen | 2018
Ren-Hao Cheng; Jie-Min Chen; Yu-Wen Chen; Honghao Cai; Xiaohong Cui; Dennis W. Hwang; Zhong Chen; Shangwu Ding
The Cover Feature shows that macromolecular crowders PEG or BSA in an aqueous solution of a paramagnetic magnetic resonance imaging (MRI) contrast agent generally bring additional proton spin relaxation to the water molecules close to the paramagnetic ion and lead to contrast change in the MRI images. This highlights the importance of considering the effect of macromolecular crowding on the performance of MRI contrast agents and image analysis, as well as diagnosis in clinical and functional MRI. More information can be found in the Full Paper on page 288 in Issue 4, 2018 by R.‐H. Cheng et al. (DOI: https://doi.org/10.1002/open.201700192).
ChemistryOpen | 2018
Ren-Hao Cheng; Jie-Min Chen; Yu-Wen Chen; Honghao Cai; Xiaohong Cui; Dennis W. Hwang; Zhong Chen; Shangwu Ding
Abstract Contrast enhancement agents are often employed in magnetic resonance imaging (MRI) for clinical diagnosis and biomedical research. However, the current theory on MRI contrast generation does not consider the ubiquitous presence of macromolecular crowders in biological systems, which poses the risk of inaccurate data interpretation and misdiagnosis. To address this issue, herein the macromolecular crowding effects on MRI contrast agent are investigated with the 1H relaxation rate of water in aqueous solutions of Dotarem with different concentrations of macromolecules. Two representative macromolecular crowder systems are used: polyethylene glycol (with no specific secondary structure) and bovine serum albumin (with compact secondary and tertiary structures). The water 1H relaxation rates in various solutions are measured in a fixed magnetic field and in variable magnetic fields. The results show significant crowding effects for both crowders. The relaxation rate is proportional to the concentration of the MRI contrast agent but shows conspicuous superlinearity with respect to the concentration of the crowder. The size of polyethylene glycol does not affect the relaxivity of water in Dotarem solutions. The above effects are verified with T 1‐ and T 2‐weighted NMR microimages. These results highlight the importance of the effect of macromolecular crowding on the MRI contrast agent and are valuable for understanding the mechanism of MRI contrast agents and designing new‐generation MRI contrast agents.