Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Denny Liggitt is active.

Publication


Featured researches published by Denny Liggitt.


Nature Medicine | 2008

Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells

Ingunn M. Stromnes; Denny Liggitt; Robert A. Harris; Joan Goverman

Multiple sclerosis is an inflammatory, demyelinating disease of the central nervous system (CNS) characterized by a wide range of clinical signs. The location of lesions in the CNS is variable and is a crucial determinant of clinical outcome. Multiple sclerosis is believed to be mediated by myelin-specific T cells, but the mechanisms that determine where T cells initiate inflammation are unknown. Differences in lesion distribution have been linked to the HLA complex, suggesting that T cell specificity influences sites of inflammation. We demonstrate that T cells that are specific for different myelin epitopes generate populations characterized by different T helper type 17 (TH17) to T helper type 1 (TH1) ratios depending on the functional avidity of interactions between TCR and peptide-MHC complexes. Notably, the TH17:TH1 ratio of infiltrating T cells determines where inflammation occurs in the CNS. Myelin-specific T cells infiltrate the meninges throughout the CNS, regardless of the TH17:TH1 ratio. However, T cell infiltration and inflammation in the brain parenchyma occurs only when TH17 cells outnumber TH1 cells and trigger a disproportionate increase in interleukin-17 expression in the brain. In contrast, T cells showing a wide range of TH17:TH1 ratios induce spinal cord parenchymal inflammation. These findings reveal critical differences in the regulation of inflammation in the brain and spinal cord.


Journal of Immunology | 2004

Cellular and Humoral Immunity against Vaccinia Virus Infection of Mice

Rong Xu; Aaron J. Johnson; Denny Liggitt; Michael J. Bevan

Despite the widespread use of vaccinia virus (VV) as a vector for other Ags and as the smallpox vaccine, there is little information available about the protective components of the immune response following VV infection. In this study, protection against wild-type VV was evaluated in mice with respect to the relative contributions of CD8+ T cells vs that of CD4+ T cells and Ab. C57BL/6 mice primed with the Western Reserve strain of VV mount significant IgM and IgG Ab responses, specific cytotoxic T cell responses, IFN-γ responses in CD4+ and CD8+ T cells, and effectively clear the virus. This protection was abrogated by in vivo depletion of CD4+ T cells or B cells in IgH−/− mice, but was not sensitive to CD8+ T cell depletion alone. However, a role for CD8+ T cells in primary protection was demonstrated in MHC class II−/− mice, where depleting CD8+ T cells lead to increase severity of disease. Unlike control MHC class II−/− mice, the group depleted of CD8+ T cells developed skin lesions on the tail and feet and had adrenal necrosis. Adoptive transfer experiments also show CD8+ T cells can mediate protective memory. These results collectively show that both CD4+ and CD8+ T cell-mediated immunity can contribute to protection against VV infection. However, CD4+ T cell-dependent anti-virus Ab production plays a more important role in clearing virus following acute infection, while in the absence of Ab, CD8+ T cells can contribute to protection against disease.


Journal of Clinical Investigation | 1993

Anti-P-selectin monoclonal antibody attenuates reperfusion injury to the rabbit ear.

Robert K. Winn; Denny Liggitt; Nicholas B. Vedder; James C. Paulson; John M. Harlan

Neutrophil adherence and/or aggregation has been implicated in ischemia reperfusion injuries. We examined the role of P-selectin in PMN-mediated injury after reperfusion of the rabbit ear. The ear was partially amputated, and then reattached leaving the central artery and vein intact. To induce ischemia the central artery was then occluded. Treatment was at reperfusion with either saline or one of two murine P-selectin mAbs, designated PB1.3 and PNB1.6 mAb PB1.3 cross-reacts with rabbit P-selectin and prevents histamine-induced leukocyte rolling, whereas PNB1.6 does not. Using a peroxidase-antiperoxidase system P-selectin was detected in the ischemic ear, but not in the nonischemic ear. Ear volume increased to 5.3 times baseline in the saline-treated animals (n = 8), 6.6 times baseline in the nonblocking mAb PNB1.6-treated animals (n = 2), and 3.7 times baseline in the blocking mAb PB1.3-treated animals (n = 8). Estimated tissue necrosis of the combined saline- and PNB1.6-treated animals was 46 vs. 2.7% for the mAb PB1.3-treated animals. We conclude that: (a) P-selectin is expressed in ischemia reperfusion; (b) P-selectin participates in PMN-endothelial cell interactions in ischemia reperfusion; and (c) inhibiting P-selectin adhesion significantly reduces reperfusion injury.


Chemical Society Reviews | 2015

In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles

Hamed Arami; Amit P. Khandhar; Denny Liggitt

Iron oxide nanoparticles (IONPs) have been extensively used during the last two decades, either as effective bio-imaging contrast agents or as carriers of biomolecules such as drugs, nucleic acids and peptides for controlled delivery to specific organs and tissues. Most of these novel applications require elaborate tuning of the physiochemical and surface properties of the IONPs. As new IONPs designs are envisioned, synergistic consideration of the bodys innate biological barriers against the administered nanoparticles and the short and long-term side effects of the IONPs become even more essential. There are several important criteria (e.g. size and size-distribution, charge, coating molecules, and plasma protein adsorption) that can be effectively tuned to control the in vivo pharmacokinetics and biodistribution of the IONPs. This paper reviews these crucial parameters, in light of biological barriers in the body, and the latest IONPs design strategies used to overcome them. A careful review of the long-term biodistribution and side effects of the IONPs in relation to nanoparticle design is also given. While the discussions presented in this review are specific to IONPs, some of the information can be readily applied to other nanoparticle systems, such as gold, silver, silica, calcium phosphates and various polymers.


Nature Immunology | 2013

Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells

Daniela A. Bermejo; Shaun W. Jackson; Melisa Gorosito-Serrán; Eva V. Acosta-Rodríguez; María C. Amezcua-Vesely; Blythe D. Sather; Akhilesh K Singh; Socheath Khim; Juan Mucci; Denny Liggitt; Oscar Campetella; Mohamed Oukka; Adriana Gruppi; David J. Rawlings

We identified B cells as a major source for rapid, innate-like interleukin 17 (IL-17) production in vivo in response to Trypanosoma cruzi infection. IL-17+ B cells exhibited a plasmablast phenotype, outnumbered TH17 cells and were required for optimal response to this pathogen. Using both murine and human primary B cells, we demonstrate that exposure to parasite-derived trans-sialidase in vitro was sufficient to trigger modification of the cell surface mucin, CD45, leading to Btk-dependent signaling and IL-17A or IL-17F production via an ROR-γt and AHR-independent transcriptional program. Our combined data suggest that generation of IL-17+ B cells may be an unappreciated feature of innate immune responses required for pathogen control or IL-17-mediated autoimmunity.Here we identified B cells as a major source of rapid, innate-like production of interleukin 17 (IL-17) in vivo in response to infection with Trypanosoma cruzi. IL-17+ B cells had a plasmablast phenotype, outnumbered cells of the TH17 subset of helper T cells and were required for an optimal response to this pathogen. With both mouse and human primary B cells, we found that exposure to parasite-derived trans-sialidase in vitro was sufficient to trigger modification of the cell-surface mucin CD45, which led to signaling dependent on the kinase Btk and production of IL-17A or IL-17F via a transcriptional program independent of the transcription factors RORγt and Ahr. Our combined data suggest that the generation of IL-17+ B cells may be a previously unappreciated feature of innate immune responses required for pathogen control or IL-17-mediated autoimmunity.


Journal of Clinical Investigation | 2013

A disease-associated PTPN22 variant promotes systemic autoimmunity in murine models

Xuezhi Dai; Richard G. James; Tania Habib; Swati Singh; Shaun W. Jackson; Socheath Khim; Randall T. Moon; Denny Liggitt; Alejandro Wolf-Yadlin; Jane H. Buckner; David J. Rawlings

Multiple autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, Graves disease, and systemic lupus erythematosus, are associated with an allelic variant of protein tyrosine phosphatase nonreceptor 22 (PTPN22), which encodes the protein LYP. To model the human disease-linked variant LYP-R620W, we generated knockin mice expressing the analogous mutation, R619W, in the murine ortholog PEST domain phosphatase (PEP). In contrast with a previous report, we found that this variant exhibits normal protein stability, but significantly alters lymphocyte function. Aged knockin mice exhibited effector T cell expansion and transitional, germinal center, and age-related B cell expansion as well as the development of autoantibodies and systemic autoimmunity. Further, PEP-R619W affected B cell selection and B lineage-restricted variant expression and was sufficient to promote autoimmunity. Consistent with these features, PEP-R619W lymphocytes were hyperresponsive to antigen-receptor engagement with a distinct profile of tyrosine-phosphorylated substrates. Thus, PEP-R619W uniquely modulates T and B cell homeostasis, leading to a loss in tolerance and autoimmunity.


Radiation Research | 2001

Modulation of Radiation-Induced Cytokine Elevation Associated with Esophagitis and Esophageal Stricture by Manganese Superoxide Dismutase-Plasmid/Liposome (SOD2-PL) Gene Therapy

Michael W. Epperly; Joan A. Gretton; S.J Defilippi; Christine A. Sikora; Denny Liggitt; Gary Koe; Joel S. Greenberger

Abstract Epperly, M. W., Gretton, J. A., DeFilippi, S. J., Sikora, C. A., Liggitt, D., Koe, G. and Greenberger, J. S. Modulation of Radiation-Induced Cytokine Elevation Associated with Esophagitis and Esophageal Stricture by Manganese Superoxide Dismutase-Plasmid/Liposome (SOD2-PL) Gene Therapy. Radiation of the esophagus of C3H/HeNsd mice with 35 or 37 Gy of 6 MV X rays induces significantly increased RNA transcription for interleukin 1 (Il1), tumor necrosis factor alpha (Tnf), interferon gamma inducing factor (Ifngr), and interferon gamma (Ifng). These elevations are associated with DNA damage that is detectable by a comet assay of explanted esophageal cells, apoptosis of the esophageal basal lining layer cells in situ, and micro-ulceration leading to dehydration and death. The histopathology and time sequence of events are comparable to the esophagitis in humans that is associated with chemoradiotherapy of non-small cell lung carcinoma (NSCLC). Intraesophageal injection of clinical-grade manganese superoxide dismutase-plasmid/liposome (SOD2-PL) 24 h prior to irradiation produced an increase in SOD2 biochemical activity in explanted esophagus. An equivalent therapeutic plasmid weight of 10 μg ALP plasmid in the same 500 μl of liposomes, correlated to around 52–60% of alkaline phosphatase-positive cells in the squamous layer of the esophagus at 24 h. Administration of SOD2-PL prior to irradiation mediated a significant decrease in induction of cytokine mRNA by radiation and decreased apoptosis of squamous lining cells, micro-ulceration, and esophagitis. Groups of mice receiving 35 or 37 Gy esophageal irradiation by a technique protecting the lungs and treating only the central mediastinal area were followed to assess the long-term effects of radiation. SOD2-PL-treated irradiated mice demonstrated a significant decrease in esophageal wall thickness at day 100 compared to irradiated controls. Mice with orthotopic thoracic tumors composed of 32D-v-abl cells that received intraesophageal SOD2-PL treatment showed transgenic mRNA in the esophagus at 24 h, but no detectable human SOD2 transgene mRNA in explanted tumors by nested RT-PCR. These data provide support for translation of this strategy of SOD2-PL gene therapy to studies leading to a clinical trial in fractionated irradiation to decrease the acute and chronic side effects of radiation-induced damage to the esophagus.


Cancer Cell | 2002

Pathway-specific tumor suppression: Reduction of p27 accelerates gastrointestinal tumorigenesis in Apc mutant mice, but not in Smad3 mutant mice

Jeannette Philipp-Staheli; Kyung Hoon Kim; Shannon R. Payne; Kay E. Gurley; Denny Liggitt; Gary Longton; Christopher J. Kemp

Expression of the cyclin-dependent kinase inhibitor p27(Kip1) (p27) is frequently reduced in human colorectal cancer, and this correlates with poor patient prognosis. To clarify the role of p27 in gastrointestinal (GI) cancer, we measured p27 expression, as well as the effect of germline deletion of p27, in 3 different mouse models of GI neoplasia. p27 expression was frequently reduced in GI tumors arising in 1,2-dimethylhydrazine (DMH) treated mice, and in Apc mutant Min/+ mice, but not in GI tumors arising in Smad3 mutant mice. Germline deletion of p27 resulted in accelerated tumor development and increased tumor cell proliferation in both DMH treated and Min/+ mice, but not in Smad3 mutant mice. p27 deficiency also led to increased adenoma to adenocarcinoma progression. These results indicate that reduction of p27 cooperates with mutations in Apc but not in Smad3 during GI tumorigenesis. Thus, tumor suppression by p27 is contingent on the specific oncogenic pathway that drives tumor development.


Journal of Immunology | 2000

Local Blockade of Allergic Airway Hyperreactivity and Inflammation by the Poxvirus-Derived Pan-CC-Chemokine Inhibitor vCCI

Karim Dabbagh; Yun Xiao; Craig V. Smith; Pamela Stepick-Biek; Sung G. Kim; Wayne J. E. Lamm; Denny Liggitt; David B. Lewis

Allergen-induced asthma is characterized by chronic pulmonary inflammation, reversible bronchoconstriction, and airway hyperreactivity to provocative stimuli. Multiple CC-chemokines, which are produced by pulmonary tissue in response to local allergen challenge of asthmatic patients or experimentally sensitized rodents, chemoattract leukocytes from the circulation into the lung parenchyma and airway, and may also modify nonchemotactic function. To determine the therapeutic potential of local intrapulmonary CC-chemokine blockade to modify asthma, a recombinant poxvirus-derived viral CC-chemokine inhibitor protein (vCCI), which binds with high affinity to rodent and human CC-chemokines in vitro and neutralizes their biological activity, was administered by the intranasal route. Administration of vCCI to the respiratory tract resulted in dramatically improved pulmonary physiological function and decreased inflammation of the airway and the lung parenchyma. In contrast, vCCI had no significant effect on the circulating levels of total or allergen-specific IgE, allergen-specific cytokine production by peripheral lymph node T cells, or peritoneal inflammation after local allergen challenge, indicating that vCCI did not alter systemic Ag-specific immunity or chemoattraction at extrapulmonary sites. Together, these findings emphasize the importance of intrapulmonary CC-chemokines in the pathogenesis of asthma, and the therapeutic potential of generic and local CC-chemokine blockade for this and other chronic diseases in which CC-chemokines are locally produced.


Human Gene Therapy | 1999

Intravenous Cytokine Gene Delivery by Lipid-DNA Complexes Controls the Growth of Established Lung Metastases

Steven W. Dow; Robyn E. Elmslie; Lee G. Fradkin; Denny Liggitt; Timothy D. Heath; Andrew P. Willson; Terry A. Potter

Local expression of cytokine genes by ex vivo transfection or intratumoral gene delivery can control the growth of cutaneous tumors. However, control of tumor metastases by conventional nonviral gene therapy approaches is more difficult. Intravenous injection of lipid-DNA complexes containing noncoding plasmid DNA can significantly inhibit the growth of early metastatic lung tumors. Therefore, we hypothesized that delivery of a cytokine gene by lipid-plasmid DNA complexes could induce even greater antitumor activity in mice with established lung metastases. The effectiveness of treatment with lipid-DNA complexes containing the IL-2 or IL-12 gene was compared with the effectiveness of treatment with complexes containing noncoding (empty vector) DNA. Treatment effects were evaluated in mice with either early (day 3) or late (day 6) established lung tumors. Lung tumor burdens and local intrapulmonary immune responses were assessed. Treatment with either noncoding plasmid DNA or with the IL-2 or IL-12 gene significantly inhibited the growth of early tumors. However, only treatment with the IL-2 or IL-12 gene induced a significant reduction in lung tumor burden in mice with more advanced metastases. Furthermore, the reduction in tumor burden was substantially greater than that achieved by treatment with recombinant cytokines. Treatment with the IL-2 or IL-12 gene was accompanied by increased numbers of NK cells and CD8+ T cells within lung tissues, increased cytotoxic activity, and increased local production of IFN-gamma by lung tissues, compared with treatment with noncoding DNA. Thus, cytokine gene delivery to the lungs by means of intravenously administered lipid-DNA complexes may be an effective method of controlling lung tumor metastases.

Collaboration


Dive into the Denny Liggitt's collaboration.

Top Co-Authors

Avatar

Robert J. Debs

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy D. Heath

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yong Liu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Socheath Khim

Seattle Children's Research Institute

View shared research outputs
Top Co-Authors

Avatar

Joan Goverman

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Mohammed Kashani-Sabet

California Pacific Medical Center

View shared research outputs
Top Co-Authors

Avatar

Steven W. Dow

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge