Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deokhoon Kim is active.

Publication


Featured researches published by Deokhoon Kim.


Nature | 2015

Comprehensive genomic profiles of small cell lung cancer

Julie George; Jing Shan Lim; Se Jin Jang; Yupeng Cun; Luka Ozretić; Gu Kong; Frauke Leenders; Xin Lu; Lynnette Fernandez-Cuesta; Graziella Bosco; Christian Müller; Ilona Dahmen; Nadine S. Jahchan; Kwon-Sik Park; Dian Yang; Anthony N. Karnezis; Dedeepya Vaka; Angela Torres; Maia Segura Wang; Jan O. Korbel; Roopika Menon; Sung-Min Chun; Deokhoon Kim; Matt Wilkerson; Neil Hayes; David Engelmann; Brigitte M. Pützer; Marc Bos; Sebastian Michels; Ignacija Vlasic

We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.


Genome Research | 2009

The first Korean genome sequence and analysis: Full genome sequencing for a socio-ethnic group

Sung-Min Ahn; Tae-Hyung Kim; Sunghoon Lee; Deokhoon Kim; Ho Ghang; Dae-Soo Kim; Byoung Chul Kim; Sang Yoon Kim; Woo-Yeon Kim; Chulhong Kim; Daeui Park; Yong Seok Lee; Sangsoo Kim; Rohit Reja; Sungwoong Jho; Chang Geun Kim; Ji-Young Cha; Kyung-Hee Kim; Bonghee Lee; Jong Bhak; Seong-Jin Kim

We present the first Korean individual genome sequence (SJK) and analysis results. The diploid genome of a Korean male was sequenced to 28.95-fold redundancy using the Illumina paired-end sequencing method. SJK covered 99.9% of the NCBI human reference genome. We identified 420,083 novel single nucleotide polymorphisms (SNPs) that are not in the dbSNP database. Despite a close similarity, significant differences were observed between the Chinese genome (YH), the only other Asian genome available, and SJK: (1) 39.87% (1,371,239 out of 3,439,107) SNPs were SJK-specific (49.51% against Venters, 46.94% against Watsons, and 44.17% against the Yoruba genomes); (2) 99.5% (22,495 out of 22,605) of short indels (< 4 bp) discovered on the same loci had the same size and type as YH; and (3) 11.3% (331 out of 2920) deletion structural variants were SJK-specific. Even after attempting to map unmapped reads of SJK to unanchored NCBI scaffolds, HGSV, and available personal genomes, there were still 5.77% SJK reads that could not be mapped. All these findings indicate that the overall genetic differences among individuals from closely related ethnic groups may be significant. Hence, constructing reference genomes for minor socio-ethnic groups will be useful for massive individual genome sequencing.


Hepatology | 2014

Genomic portrait of resectable hepatocellular carcinomas: implications of RB1 and FGF19 aberrations for patient stratification.

Sung-Min Ahn; Se Jin Jang; Ju Hyun Shim; Deokhoon Kim; Seung-Mo Hong; Chang Ohk Sung; Daehyun Baek; Farhan Haq; Adnan Ahmad Ansari; Sun Young Lee; Sung-Min Chun; Seongmin Choi; Hyun-jeung Choi; Jongkyu Kim; Sukjun Kim; Shin Hwang; Young-Joo Lee; Jong Eun Lee; Wang‐rim Jung; Hye Yoon Jang; Eunho Yang; Wing-Kin Sung; Nikki P. Lee; Mao Mao; Charles Lee; Jessica Zucman-Rossi; Eunsil Yu; Han Chu Lee; Gu Kong

Hepatic resection is the most curative treatment option for early‐stage hepatocellular carcinoma, but is associated with a high recurrence rate, which exceeds 50% at 5 years after surgery. Understanding the genetic basis of hepatocellular carcinoma at surgically curable stages may enable the identification of new molecular biomarkers that accurately identify patients in need of additional early therapeutic interventions. Whole exome sequencing and copy number analysis was performed on 231 hepatocellular carcinomas (72% with hepatitis B viral infection) that were classified as early‐stage hepatocellular carcinomas, candidates for surgical resection. Recurrent mutations were validated by Sanger sequencing. Unsupervised genomic analyses identified an association between specific genetic aberrations and postoperative clinical outcomes. Recurrent somatic mutations were identified in nine genes, including TP53, CTNNB1, AXIN1, RPS6KA3, and RB1. Recurrent homozygous deletions in FAM123A, RB1, and CDKN2A, and high‐copy amplifications in MYC, RSPO2, CCND1, and FGF19 were detected. Pathway analyses of these genes revealed aberrations in the p53, Wnt, PIK3/Ras, cell cycle, and chromatin remodeling pathways. RB1 mutations were significantly associated with cancer‐specific and recurrence‐free survival after resection (multivariate Pu2009=u20090.038 and Pu2009=u20090.012, respectively). FGF19 amplifications, known to activate Wnt signaling, were mutually exclusive with CTNNB1 and AXIN1 mutations, and significantly associated with cirrhosis (Pu2009=u20090.017). Conclusion: RB1 mutations can be used as a prognostic molecular biomarker for resectable hepatocellular carcinoma. Further study is required to investigate the potential role of FGF19 amplification in driving hepatocarcinogenesis in patients with liver cirrhosis and to investigate the potential of anti‐FGF19 treatment in these patients. (Hepatology 2014;60:1971–1981)


PLOS ONE | 2011

Integrated Expression Profiling and Genome-Wide Analysis of ChREBP Targets Reveals the Dual Role for ChREBP in Glucose-Regulated Gene Expression

Yun Seung Jeong; Deokhoon Kim; Yong Seok Lee; Ha Jung Kim; Jung Youn Han; Seung Soon Im; Hansook Kim Chong; Je Keun Kwon; Yun Ho Cho; Woo Kyung Kim; Timothy F. Osborne; Jay D. Horton; Hee-Sook Jun; Yong-Ho Ahn; Sung-Min Ahn; Ji Young Cha

The carbohydrate response element binding protein (ChREBP), a basic helix-loop-helix/leucine zipper transcription factor, plays a critical role in the control of lipogenesis in the liver. To identify the direct targets of ChREBP on a genome-wide scale and provide more insight into the mechanism by which ChREBP regulates glucose-responsive gene expression, we performed chromatin immunoprecipitation-sequencing and gene expression analysis. We identified 1153 ChREBP binding sites and 783 target genes using the chromatin from HepG2, a human hepatocellular carcinoma cell line. A motif search revealed a refined consensus sequence (CABGTG-nnCnG-nGnSTG) to better represent critical elements of a functional ChREBP binding sequence. Gene ontology analysis shows that ChREBP target genes are particularly associated with lipid, fatty acid and steroid metabolism. In addition, other functional gene clusters related to transport, development and cell motility are significantly enriched. Gene set enrichment analysis reveals that ChREBP target genes are highly correlated with genes regulated by high glucose, providing a functional relevance to the genome-wide binding study. Furthermore, we have demonstrated that ChREBP may function as a transcriptional repressor as well as an activator.


British Journal of Surgery | 2011

Comparison of open and laparoscopic live donor left lateral sectionectomy

Kyung-Jo Kim; D.-H. Jung; Kyoung-Jin Park; Yunkyoung Lee; Deokhoon Kim; Keon-Kuk Kim; S.-G. Lee

The present study was undertaken to determine whether laparoscopic live donor left lateral sectionectomy (LLS) in paediatric liver transplantation is a feasible, safe and reproducible procedure, compared with open live donor left lateral sectionectomy (OLS).


PLOS ONE | 2008

Human Microglial Cells Synthesize Albumin in Brain

Sung-Min Ahn; Kyunghee Byun; Kun Cho; Jin Young Kim; Jong Shin Yoo; Deokhoon Kim; Sun Ha Paek; Seung U. Kim; Richard J. Simpson; Bonghee Lee

Albumin, an abundant plasma protein with multifunctional properties, is mainly synthesized in the liver. Albumin has been implicated in Alzheimers disease (AD) since it can bind to and transport amyloid beta (Aβ), the causative agent of AD; albumin is also a potent inhibitor of Aβ polymerization. Despite evidence of non-hepatic transcription of albumin in many tissues including kidney and pancreas, non-hepatic synthesis of albumin at the protein level has been rarely confirmed. In a pilot phase study of Human Brain Proteome Project, we found evidence that microglial cells in brain may synthesize albumin. Here we report, for the first time, the de novo synthesis of albumin in human microglial cells in brain. Furtherore, we demonstrate that the synthesis and secretion of albumin from microglial cells is enhanced upon microgial activation by Aβ1–42- or lipopolysaccharide (LPS)-treatment. These data indicate that microglial cells may play a beneficial role in AD by secreting albumin that not only inhibits Aβ polymerization but also increases its clearance.


PLOS ONE | 2014

Comparative genomic analysis of primary and synchronous metastatic colorectal cancers.

Sun Young Lee; Farhan Haq; Deokhoon Kim; Cui Jun; Hui-Jong Jo; Sung-Min Ahn; Won-Suk Lee

Approximately 50% of patients with primary colorectal carcinoma develop liver metastases. Understanding the genetic differences between primary colon cancer and their metastases to the liver is essential for devising a better therapeutic approach for this disease. We performed whole exome sequencing and copy number analysis for 15 triplets, each comprising normal colorectal tissue, primary colorectal carcinoma, and its synchronous matched liver metastasis. We analyzed the similarities and differences between primary colorectal carcinoma and matched liver metastases in regards to somatic mutations and somatic copy number alterationss. The genomic profiling demonstrated mutations in APC(73%), KRAS (33%), ARID1A and PIK3CA (6.7%) genes between primary colorectal and metastatic liver tumors. TP53 mutation was observed in 47% of the primary samples and 67% in liver metastatic samples. The grouped pairs, in hierarchical clustering showed similar somatic copy number alteration patterns, in contrast to the ungrouped pairs. Many mutations (including those of known key cancer driver genes) were shared in the grouped pairs. The ungrouped pairs exhibited distinct mutation patterns with no shared mutations in key driver genes. Four ungrouped liver metastasis samples had mutations in DNA mismatch repair genes along with hypermutations and a substantial number of copy number alterations. Our results suggest that about half of the metastatic colorectal carcinoma had the same clonal origin with their primary colorectal carcinomas, whereas remaining cases were genetically distinct from their primary carcinomas. These findings underscore the need to evaluate metastatic lesions separately for optimized therapy, rather than to extrapolate from primary tumor data.


PLOS ONE | 2008

Olig2-Induced Neural Stem Cell Differentiation Involves Downregulation of Wnt Signaling and Induction of Dickkopf-1 Expression

Sung-Min Ahn; Kyunghee Byun; Deokhoon Kim; Ki Young Lee; Jong Shin Yoo; Seung U. Kim; Eek-hoon Jho; Richard J. Simpson; Bonghee Lee

Understanding stem cell-differentiation at the molecular level is important for clinical applications of stem cells and for finding new therapeutic approaches in the context of cancer stem cells. To investigate genome-wide changes involved in differentiation, we have used immortalized neural stem cell (NSC) line (HB1.F3) and Olig2-induced NSC differentiation model (F3.Olig2). Using microarray analysis, we revealed that Olig2-induced NSC differentiation involves downregulation of Wnt pathway, which was further confirmed by TOPflash/FOPflash reporter assay, RT-PCR analysis, immunoblots, and immunocytochemistry. Furthermore, we found that Olig2-induced differentiation induces the expression of Dickkopf-1(Dkk1), a potent antagonist of Wnt signaling. Dkk1 treatment blocked Wnt signaling in HB1.F3 in a dosage-dependent manner, and induced differentiation into astrocytes, oligodendrocytes, and neurons. Our results support cancer stem cell hypothesis which implies that signaling pathway for self-renewal and proliferation of stem cells is maintained till the late stage of differentiation. In our proposed model, Dkk1 may play an important role in downregulating self-renewal and proliferation pathway of stem cells at the late stage of differentiation, and its failure may lead to carcinogenesis.


Molecular Cancer Research | 2015

Anti–miR-21 Suppresses Hepatocellular Carcinoma Growth via Broad Transcriptional Network Deregulation

Timothy R. Wagenaar; Sonya Zabludoff; Sung-Min Ahn; Charles A. Allerson; Heike Arlt; Raffaele Baffa; Hui Cao; Scott Davis; Carlos Garcia-Echeverria; Rajula Gaur; Shih-Min A. Huang; Lan Jiang; Deokhoon Kim; Christiane Metz-Weidmann; Adam Pavlicek; Jack Pollard; Jason Reeves; Jennifer Rocnik; Sabine Scheidler; Chaomei Shi; Fangxian Sun; Tatiana Tolstykh; William Weber; Christopher Winter; Eunsil Yu; Qunyan Yu; Gang Zheng; Dmitri Wiederschain

Hepatocellular carcinoma (HCC) remains a significant clinical challenge with few therapeutic options available to cancer patients. MicroRNA 21-5p (miR-21) has been shown to be upregulated in HCC, but the contribution of this oncomiR to the maintenance of tumorigenic phenotype in liver cancer remains poorly understood. We have developed potent and specific single-stranded oligonucleotide inhibitors of miR-21 (anti-miRNAs) and used them to interrogate dependency on miR-21 in a panel of liver cancer cell lines. Treatment with anti–miR-21, but not with a mismatch control anti-miRNA, resulted in significant derepression of direct targets of miR-21 and led to loss of viability in the majority of HCC cell lines tested. Robust induction of caspase activity, apoptosis, and necrosis was noted in anti–miR-21-treated HCC cells. Furthermore, ablation of miR-21 activity resulted in inhibition of HCC cell migration and suppression of clonogenic growth. To better understand the consequences of miR-21 suppression, global gene expression profiling was performed on anti–miR-21-treated liver cancer cells, which revealed striking enrichment in miR-21 target genes and deregulation of multiple growth-promoting pathways. Finally, in vivo dependency on miR-21 was observed in two separate HCC tumor xenograft models. In summary, these data establish a clear role for miR-21 in the maintenance of tumorigenic phenotype in HCC in vitro and in vivo. Implications: miR-21 is important for the maintenance of the tumorigenic phenotype of HCC and represents a target for pharmacologic intervention. Mol Cancer Res; 13(6); 1009–21. ©2015 AACR.


Oncotarget | 2016

The somatic POLE P286R mutation defines a unique subclass of colorectal cancer featuring hypermutation, representing a potential genomic biomarker for immunotherapy

Sung-Min Ahn; Adnan Ahmad Ansari; Jihun Kim; Deokhoon Kim; Sung-Min Chun; Jiyun Kim; Tae Won Kim; In-Ja Park; Chang-Sik Yu; Se Jin Jang

Early-onset colorectal cancers (EOCRCs) may have biological or genomic features distinct from late-onset CRCs (LOCRCs). Previous studies have mostly focused on the germline predisposition conditions of EOCRCs, but we hypothesized that EOCRCs may have distinct somatic aberrations that accelerate cancer development. To identify the somatic aberrations that accelerate cancer development at an early age, we conducted whole exome sequencing for 28 polyposis-unrelated, microsatellite stable (MSS) EOCRCs with no known germline predisposition conditions. Surprisingly, we found two distinct groups in the context of mutational burden: 6 hypermutated cases with 2325 to 10973 mutations and 22 nonhypermutated cases with 47 to 154 mutations. Further analysis revealed that four of the six hypermutated cases had the same POLE P286R mutation. We validated this finding in 83 MSS EOCRCs and 27 MSS LOCRCs, which revealed that 7.2% of EOCRCs (6/83) had the POLE P286R mutation, which was not found in LOCRCs. Clinicopathologically, EOCRCs with POLE mutations occurred far more frequently in the right colon than in the left colon, affecting men more frequently than women. In summary, we have identified a unique subclass of colon cancer characterized by a hypermutation associated with the POLE mutation. The acquisition of the POLE mutation leading to hypermutation can accelerate cancer development. Clinically, this subset with hypermutation may be susceptible to immune checkpoint blockade.

Collaboration


Dive into the Deokhoon Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suk-Koo Lee

Samsung Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyungpyo Park

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge