Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deokjae Lee is active.

Publication


Featured researches published by Deokjae Lee.


Physical Review E | 2010

Complete trails of coauthorship network evolution.

Deokjae Lee; K. I. Goh; B. Kahng; D. Kim

The rise and fall of a research field is the cumulative outcome of its intrinsic scientific value and social coordination among scientists. The structure of the social component is quantifiable by the social network of researchers linked via coauthorship relations, which can be tracked through digital records. Here, we use such coauthorship data in theoretical physics and study their complete evolutionary trail since inception, with a particular emphasis on the early transient stages. We find that the coauthorship networks evolve through three common major processes in time: the nucleation of small isolated components, the formation of a treelike giant component through cluster aggregation, and the entanglement of the network by large-scale loops. The giant component is constantly changing yet robust upon link degradations, forming the networks dynamic core. The observed patterns are successfully reproducible through a network model.


Scientific Reports | 2017

Universal mechanism for hybrid percolation transitions

Deokjae Lee; Wonjun Choi; János Kertész; B. Kahng

Hybrid percolation transitions (HPTs) induced by cascading processes have been observed in diverse complex systems such as k-core percolation, breakdown on interdependent networks and cooperative epidemic spreading models. Here we present the microscopic universal mechanism underlying those HPTs. We show that the discontinuity in the order parameter results from two steps: a durable critical branching (CB) and an explosive, supercritical (SC) process, the latter resulting from large loops inevitably present in finite size samples. In a random network of N nodes at the transition the CB process persists for O(N1/3) time and the remaining nodes become vulnerable, which are then activated in the short SC process. This crossover mechanism and scaling behavior are universal for different HPT systems. Our result implies that the crossover time O(N1/3) is a golden time, during which one needs to take actions to control and prevent the formation of a macroscopic cascade, e.g., a pandemic outbreak.


PLOS ONE | 2013

Microscopic modelling circadian and bursty pattern of human activities.

Jinhong Kim; Deokjae Lee; B. Kahng

Recent studies for a wide range of human activities such as email communication, Web browsing, and library visiting, have revealed the bursty nature of human activities. The distribution of inter-event times (IETs) between two consecutive human activities exhibits a heavy-tailed decay behavior and the oscillating pattern with a one-day period, reflective of the circadian pattern of human life. Even though a priority-based queueing model was successful as a basic model for understanding the heavy-tailed behavior, it ignored important ingredients, such as the diversity of individual activities and the circadian pattern of human life. Here, we collect a large scale of dataset which contains individuals’ time stamps when articles are posted on blog posts, and based on which we construct a theoretical model which can take into account of both ignored ingredients. Once we identify active and inactive time intervals of individuals and remove the inactive time interval, thereby constructing an ad hoc continuous time domain. Therein, the priority-based queueing model is applied by adjusting the arrival and the execution rates of tasks by comparing them with the activity data of individuals. Then, the obtained results are transferred back to the real-time domain, which produces the oscillating and heavy-tailed IET distribution. This microscopic model enables us to develop theoretical understanding towards more empirical results.


Physical Review E | 2015

Efficient algorithm to compute mutually connected components in interdependent networks.

S. Hwang; S. Choi; Deokjae Lee; B. Kahng

Mutually connected components (MCCs) play an important role as a measure of resilience in the study of interdependent networks. Despite their importance, an efficient algorithm to obtain the statistics of all MCCs during the removal of links has thus far been absent. Here, using a well-known fully dynamic graph algorithm, we propose an efficient algorithm to accomplish this task. We show that the time complexity of this algorithm is approximately O(N(1.2)) for random graphs, which is more efficient than O(N(2)) of the brute-force algorithm. We confirm the correctness of our algorithm by comparing the behavior of the order parameter as links are removed with existing results for three types of double-layer multiplex networks. We anticipate that this algorithm will be used for simulations of large-size systems that have been previously inaccessible.


Physical Review E | 2017

Critical behavior of a two-step contagion model with multiple seeds

Wonjun Choi; Deokjae Lee; B. Kahng

A two-step contagion model with a single seed serves as a cornerstone for understanding the critical behaviors and underlying mechanism of discontinuous percolation transitions induced by cascade dynamics. When the contagion spreads from a single seed, a cluster of infected and recovered nodes grows without any cluster merging process. However, when the contagion starts from multiple seeds of O(N) where N is the system size, a node weakened by a seed can be infected more easily when it is in contact with another node infected by a different pathogen seed. This contagion process can be viewed as a cluster merging process in a percolation model. Here we show analytically and numerically that when the density of infectious seeds is relatively small but O(1), the epidemic transition is hybrid, exhibiting both continuous and discontinuous behavior, whereas when it is sufficiently large and reaches a critical point, the transition becomes continuous. We determine the full set of critical exponents describing the hybrid and the continuous transitions. Their critical behaviors differ from those in the single-seed case.


Physical Review E | 2017

Mixed-order phase transition in a two-step contagion model with a single infectious seed

Wonjun Choi; Deokjae Lee; B. Kahng

Percolation is known as one of the most robust continuous transitions, because its occupation rule is intrinsically local. As one of the ways to break the robustness, occupation is allowed to more than one species of particles and they occupy cooperatively. This generalized percolation model undergoes a discontinuous transition. Here we investigate an epidemic model with two contagion steps and characterize its phase transition analytically and numerically. We find that even though the order parameter jumps at a transition point r_{c}, then increases continuously, it does not exhibit any critical behavior: the fluctuations of the order parameter do not diverge at r_{c}. However, critical behavior appears in mean outbreak size, which diverges at the transition point in a manner that the ordinary percolation shows. Such a type of phase transition is regarded as a mixed-order phase transition. We also obtain scaling relations of cascade outbreak statistics when the order parameter jumps at r_{c}.


Physical Review E | 2012

Branching process approach for Boolean bipartite networks of metabolic reactions.

Deokjae Lee; K. I. Goh; B. Kahng

The branching process (BP) approach has been successful in explaining the avalanche dynamics in complex networks. However, its applications are mainly focused on unipartite networks, in which all nodes are of the same type. Here, motivated by a need to understand avalanche dynamics in metabolic networks, we extend the BP approach to a particular bipartite network composed of Boolean AND and OR logic gates. We reduce the bipartite network into a unipartite network by integrating out OR gates and obtain the effective branching ratio for the remaining AND gates. Then the standard BP approach is applied to the reduced network, and the avalanche-size distribution is obtained. We test the BP results with simulations on the model networks and two microbial metabolic networks, demonstrating the usefulness of the BP approach.


Journal of Statistical Mechanics: Theory and Experiment | 2016

Diverse types of percolation transitions

Deokjae Lee; Young Sul Cho; B. Kahng

Percolation has long served as a model for diverse phenomena and systems. The percolation transition, that is, the formation of a giant cluster on a macroscopic scale, is known as one of the most robust continuous transitions. Recently, however, many abrupt percolation transitions have been observed in complex systems. To illustrate such phenomena, considerable effort has been made to introduce models and construct theoretical frameworks for explosive, discontinuous, and hybrid percolation transitions. Experimental results have also been reported. In this review article, we describe such percolation models, their critical behaviors and universal features, and real-world phenomena.


Physical Review E | 2015

Forest Fire Model as a Supercritical Dynamic Model in Financial Systems

Deokjae Lee; Jae-Young Kim; Jeho Lee; B. Kahng

Recently large-scale cascading failures in complex systems have garnered substantial attention. Such extreme events have been treated as an integral part of self-organized criticality (SOC). Recent empirical work has suggested that some extreme events systematically deviate from the SOC paradigm, requiring a different theoretical framework. We shed additional theoretical light on this possibility by studying financial crisis. We build our model of financial crisis on the well-known forest fire model in scale-free networks. Our analysis shows a nontrivial scaling feature indicating supercritical behavior, which is independent of system size. Extreme events in the supercritical state result from bursting of a fat bubble, seeds of which are sown by a protracted period of a benign financial environment with few shocks. Our findings suggest that policymakers can control the magnitude of financial meltdowns by keeping the economy operating within reasonable duration of a benign environment.


Journal of the Korean Physical Society | 2018

Recent Advances of Percolation Theory in Complex Networks

Deokjae Lee; B. Kahng; Y. S. Cho; K. I. Goh; Dong-Jin Lee

During the past two decades, percolation has long served as a basic paradigm for network resilience, community formation and so on in complex systems. While the percolation transition is known as one of the most robust continuous transitions, the percolation transitions occurring in complex systems are often of different types such as discontinuous, hybrid, and infinite-order phase transitions. Thus, percolation has received considerable attention in network science community. Here we present a very brief review of percolation theory recently developed, which includes those types of phase transitions, critical phenomena, and finite-size scaling theory. Moreover, we discuss potential applications of theoretical results and several open questions including universal behaviors.

Collaboration


Dive into the Deokjae Lee's collaboration.

Top Co-Authors

Avatar

B. Kahng

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wonjun Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

János Kertész

Central European University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyu S. Hahn

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

S. Choi

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

D. Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dongeun Park

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge