Der Chiang Li
National Cheng Kung University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Der Chiang Li.
Computers & Industrial Engineering | 2009
Der Chiang Li; Chun-Wu Yeh; Che Jung Chang
Global competition has shortened product life cycles and makes the trend of industrial demand not easily forecasted. Therefore, one of the key points that will enable enterprises to survive and succeed is the ability to adapt to this dynamic environment. However, the available data, such as demand and sales, are often limited in the early periods of product life cycles, making traditional forecasting techniques unreliable for decision making. Although various forecasting methods currently exist, their utility is often limited by insufficient data and indefinite data distribution. The grey prediction model is one of the potential approaches for small sample forecast, although its often hard to amend according to the sample characteristics in practice, owing to its fixed modeling method. This research tries to use the trend and potency tracking method (TPTM) to analyze sample behavior, extract the concealed information from data, and utilize the trend and potency value to construct an adaptive grey prediction model, AGM (1,1), based on grey theory. The experimental results show that the proposed model can improve the prediction accuracy for small samples.
Computers & Operations Research | 2012
Der Chiang Li; Peng Hsiang Hsu
Scheduling with multiple agents and learning effect has drawn much attention. In this paper, we investigate the job scheduling problem of two agents competing for the usage of a common single machine with learning effect. The objective is to minimize the total weighted completion time of both agents with the restriction that the makespan of either agent cannot exceed an upper bound. In order to solve this problem we develop several dominance properties and a lower bound based on a branch-and-bound to find the optimal algorithm, and derive genetic algorithm based procedures for finding near-optimal solutions. The performances of the proposed algorithms are evaluated and compared via computational experiments.
Expert Systems With Applications | 2010
Der Chiang Li; Chiao-Wen Liu
Appropriate choice of kernels is the most important task when using kernel-based learning methods such as support vector machines. The current widely used kernels (such as polynomial kernel, Gaussian kernel, two-layer perceptron kernel, and so on) are all functional kernels for general purposes. Currently, there is no kernel proposed in a data-driven way. This paper proposes a new kernel generating method dependent on classifying related properties of the data structure itself. The new kernel concentrates on the similarity of paired data in classes, where the calculation of similarity is based on fuzzy theories. The experimental results with four medical data sets show that the proposed kernel has superior classification performance than polynomial and Gaussian kernels.
IEEE Transactions on Knowledge and Data Engineering | 2012
Der Chiang Li; Chiao Wen Liu
Data quantity is the main issue in the small data set problem, because usually insufficient data will not lead to a robust classification performance. How to extract more effective information from a small data set is thus of considerable interest. This paper proposes a new attribute construction approach which converts the original data attributes into a higher dimensional feature space to extract more attribute information by a similarity-based algorithm using the classification-oriented fuzzy membership function. Seven data sets with different attribute sizes are employed to examine the performance of the proposed method. The results show that the proposed method has a superior classification performance when compared to principal component analysis (PCA), kernel principal component analysis (KPCA), and kernel independent component analysis (KICA) with a Gaussian kernel in the support vector machine (SVM) classifier.
Expert Systems With Applications | 2008
Tung-I Tsai; Der Chiang Li
If the production process, production equipment, or material changes, it becomes necessary to execute pilot runs before mass production in manufacturing systems. Using the limited data obtained from pilot runs to shorten the lead time to predict future production is this worthy of study. Although, artificial neural networks are widely utilized to extract management knowledge from acquired data, sufficient training data is the fundamental assumption. Unfortunately, this is often not achievable for pilot runs because there are few data obtained during trial stages and theoretically this means that the knowledge obtained is fragile. The purpose of this research is to utilize bootstrap to generate virtual samples to fill the information gaps of sparse data. The results of this research indicate that the prediction error rate can be significantly decreased by applying the proposed method to a very small data set.
European Journal of Operational Research | 2010
Yao-San Lin; Der Chiang Li
The statistical theories are not expected to generate significant conclusions, when applied to very small data sets. Knowledge derived from limited data gathered in the early stages is considered too fragile for long term production decisions. Unfortunately, this work is necessary in the competitive industry and business environments. Our previous researches have been aimed at learning from small data sets for scheduling flexible manufacturing systems, and this article will focus development of an incremental learning procedure for small sequential data sets. The main consideration concentrates on two properties of data: that the data size is very small and the data are time-dependent. For this reason, we propose an extended algorithm named the Generalized-Trend-Diffusion (GTD) method, based on fuzzy theories, developing a unique backward tracking process for exploring predictive information through the strategy of shadow data generation. The extra information extracted from the shadow data has proven useful in accelerating the learning task and dynamically correcting the derived knowledge in a concurrent fashion.
Expert Systems With Applications | 2008
Der Chiang Li; Yao-Hwei Fang
Support vector machines (SVM) are widely applied to various classification problems. However, most SVM need lengthy computation time when faced with a large and complicated dataset. This research develops a clustering algorithm for efficient learning. The method mainly categorizes data into clusters, and finds critical data in clusters as a substitute for the original data to reduce the computational complexity. The computational experiments presented in this paper show that the clustering algorithm significantly advances SVM learning efficiency.
Journal of Intelligent Manufacturing | 2012
Der Chiang Li; Wen Chih Chen; Chiao Wen Liu; Yao San Lin
Thin Film Transistor—Liquid Crystal Displays (TFT-LCDs) are widely used in TVs, monitors, and PDAs. The key process of producing a TFT-LCD is using alignment to combine a Thin Film Transistor (TFT) panel with a Color Filter (CF) panel, which is called “celling”. The defined cell vernier, which indicates the alignment error, is an important quality index in the manufacturing process. In the CF manufacturing process, the cell vernier is difficult to control because it depends on six TPEs (Total Pitch Errors), with each TPE highly dependent on the others. This paper aims to improve the cell vernier forecasting model with the six TPE attributes to enhance the production yield in the CF manufacturing process. Using the six dependent variables, this study found that the SVR (Support Vector Machine for Regression) model is the fittest for generating quality results that meet the designed specifications.
International Journal of Production Research | 2006
Der Chiang Li; Chu Chieh Wu; F. M. Chang
Knowledge derived from limited data gathered in the early manufacturing stages is usually too fragile for a flexible manufacturing system (FMS). Unfortunately, production decisions have to be made quickly in a competitive environment. In a previous study, a strategy using continuous data and domain external expansion methods under a known data domain range was proposed to solve the so-called small data set learning problem in FMS. The present paper goes further in seeking a quantitative method to determine the range of domain external expansion under unknown domain bounds. The research considers the data bias phenomenon that often occurs in small data sets and provides a method for its adjustment. Beyond this, the study also compares the learning results among three types of membership functions (Bell, Trapezoid, Triangular) for data fuzzification. The results show that the proposed approach can advance the learning accuracy of a broad range of applications.
Applied Mathematics and Computation | 2015
Che Jung Chang; Der Chiang Li; Yi Hsiang Huang; Chien Chih Chen
Efficiently controlling the early stages of a manufacturing system is an important issue for enterprises. However, the number of samples collected at this point is usually limited due to time and cost issues, making it difficult to understand the real situation in the production process. One of the ways to solve this problem is to use a small data set forecasting tool, such as the various gray approaches. The gray model is a popular forecasting technique for use with small data sets, and while it has been successfully adopted in various fields, it can still be further improved. This paper thus uses a box plot to analyze data features and proposes a new formula for the background values in the gray model to improve forecasting accuracy. The new forecasting model is called BGM(1,1). In the experimental study, one public dataset and one real case are used to confirm the effectiveness of the proposed model, and the experimental results show that it is an appropriate tool for small data set forecasting. Small-data-set forecasting problem is difficult for most manufacturing environments.A forecasting tool using limited data for engineers and managers is more effective and efficient.The proposed method base on the box plot can analyze data features to improve forecasting accuracy with small data sets.The proposed method is considered an appropriate procedure in general to forecast manufacturing outputs based on small samples.