Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek Abbott is active.

Publication


Featured researches published by Derek Abbott.


PLOS Computational Biology | 2009

What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology

Mark D. McDonnell; Derek Abbott

Stochastic resonance is said to be observed when increases in levels of unpredictable fluctuations—e.g., random noise—cause an increase in a metric of the quality of signal transmission or detection performance, rather than a decrease. This counterintuitive effect relies on system nonlinearities and on some parameter ranges being “suboptimal”. Stochastic resonance has been observed, quantified, and described in a plethora of physical and biological systems, including neurons. Being a topic of widespread multidisciplinary interest, the definition of stochastic resonance has evolved significantly over the last decade or so, leading to a number of debates, misunderstandings, and controversies. Perhaps the most important debate is whether the brain has evolved to utilize random noise in vivo, as part of the “neural code”. Surprisingly, this debate has been for the most part ignored by neuroscientists, despite much indirect evidence of a positive role for noise in the brain. We explore some of the reasons for this and argue why it would be more surprising if the brain did not exploit randomness provided by noise—via stochastic resonance or otherwise—than if it did. We also challenge neuroscientists and biologists, both computational and experimental, to embrace a very broad definition of stochastic resonance in terms of signal-processing “noise benefits”, and to devise experiments aimed at verifying that random variability can play a functional role in the brain, nervous system, or other areas of biology.


IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part B | 1998

A review of 3-D packaging technology

Said F. Al-Sarawi; Derek Abbott; Paul D. Franzon

This paper reviews the state-of-the-art in three-dimensional (3-D) packaging technology for very large scale integration (VLSI). A number of bare dice and multichip module (MCM) stacking technologies are emerging to meet the ever increasing demands for low power consumption, low weight and compact portable systems. Vertical interconnect techniques are reviewed in detail. Technical issues such as silicon efficiency, complexity, thermal management, interconnection density, speed, power etc. are critical in the choice of 3-D stacking technology, depending on the target application, and are briefly discussed.


Proceedings of the IEEE | 2010

Keeping the Energy Debate Clean: How Do We Supply the World's Energy Needs?

Derek Abbott

We take a fresh look at the major nonrenewable and renewable energy sources and examine their long-term viability, scalability, and the sustainability of the resources that they use. We achieve this by asking what would happen if each energy source was a single supply of power for the world, as a gedanken experiment. From this perspective, a solar hydrogen economy emerges as a dominant solution to the worlds energy needs. If we globally tap sunlight over only 1% of the incident area at only an energy conversion efficiency of 1%, it is simple to show that this meets our current world energy consumption. As 9% of the planet surface area is taken up by desert and efficiencies well over 1% are possible, in practice, this opens up many exciting future opportunities. Specifically, we find solar thermal collection via parabolic reflectors - where focussed sunlight heats steam to about 600?C to drive a turbine - is the best available technology for generating electricity. For static power storage, to provide electricity at night, there are a number of viable options that are discussed. For mobile power storage, such as for fueling vehicles, we argue the case for both liquid and gaseous hydrogen for use in internal combustion engines. We outline a number of reasons why semiconductor solar cells and hydrogen fuel cells do not appear to scale up for a global solution. We adopt an approach that envisions exploiting massive economy of scale by establishing large arrays of solar collectors in hot desert regions of the world. For nonrenewable sources we argue that we cannot wait for them to be exhausted - we need to start conserving them imminently. What is often forgotten in the energy debate is that oil, natural gas, and coal are not only used as energy sources, but we also rely on them for embodying many crucial physical products. It is this fact that requires us to develop a solar hydrogen platform with urgency. It is argued that a solar future is unavoidable, as ultimately humankind has no other choice.


Nature | 1999

Game theory: Losing strategies can win by Parrondo's paradox

Gregory P. Harmer; Derek Abbott

In a game of chess, pieces can sometimes be sacrificed in order to win the overall game. Similarly, engineers know that two unstable systems, if combined in the right way, can paradoxically become stable. But can two losing gambling games be set up such that, when they are played one after the other, they becoming winning? The answer is yes. This is a striking new result in game theory called Parrondos paradox, after its discoverer, Juan Parrondo1, 2. Here we model this behaviour as a flashing ratchet3, in which winning results if play alternates randomly between two games.


IEEE Photonics Journal | 2009

Metamaterials in the Terahertz Regime

Withawat Withayachumnankul; Derek Abbott

Metamaterials are artificial composites that acquire their electromagnetic properties from embedded subwavelength metallic structures. In theory, the effective electromagnetic properties of metamaterials at any frequency can be engineered to take on arbitrary values, including those not appearing in nature. As a result, this new class of materials can dramatically add a degree of freedom to the control of electromagnetic waves. The emergence of metamaterials fortunately coincides with the intense emerging interest in terahertz radiation (T-rays), for which efficient forms of electromagnetic manipulation are sought. Considering the scarcity of naturally existing materials that can control terahertz, metamaterials become ideal substitutes that promise advances in terahertz research. Ultimately, terahertz metamaterials will lead to scientific and technological advantages in a number of areas. This article covers the principles of metamaterials and reviews the latest trends in terahertz metamaterial research from the fabrication and characterization to the implementation.


IEEE Transactions on Very Large Scale Integration Systems | 2011

Memristor MOS Content Addressable Memory (MCAM): Hybrid Architecture for Future High Performance Search Engines

Kamran Eshraghian; Kyoung Rok Cho; Omid Kavehei; Soon-Ku Kang; Derek Abbott; Sung-Mo Steve Kang

Large-capacity content addressable memory (CAM) is a key element in a wide variety of applications. The inevitable complexities of scaling MOS transistors introduce a major challenge in the realization of such systems. Convergence of disparate technologies, which are compatible with CMOS processing, may allow extension of Moores Law for a few more years. This paper provides a new approach towards the design and modeling of Memory resistor (Memristor)-based CAM (MCAM) using a combination of memristor MOS devices to form the core of a memory/compare logic cell that forms the building block of the CAM architecture. The non-volatile characteristic and the nanoscale geometry together with compatibility of the memristor with CMOS processing technology increases the packing density, provides for new approaches towards power management through disabling CAM blocks without loss of stored data, reduces power dissipation, and has scope for speed improvement as the technology matures.


Physical Review Letters | 2000

New Paradoxical Games Based on Brownian Ratchets

Juan M. R. Parrondo; Gregory P. Harmer; Derek Abbott

Based on Brownian ratchets, a counterintuitive phenomenon has recently emerged-namely, that two losing games can yield, when combined, a paradoxical tendency to win. A restriction of this phenomenon is that the rules depend on the current capital of the player. Here we present new games where all the rules depend only on the history of the game and not on the capital. This new history-dependent structure significantly increases the parameter space for which the effect operates.


IEEE Transactions on Instrumentation and Measurement | 2002

A review of stochastic resonance: circuits and measurement

Gregory P. Harmer; Bruce R. Davis; Derek Abbott

Noise in dynamical systems is usually considered a nuisance. However, in certain nonlinear systems, including electronic circuits and biological sensory systems, the presence of noise can enhance the detection of weak signals. The phenomenon is termed stochastic resonance and is of great interest for electronic instrumentation. We review and investigate the stochastic resonance of several bistable circuits. A new type of S characteristic circuit is demonstrated using simple nonlinear elements with an operational amplifier. Using this circuit, the effects on stochastic resonance were determined as the slope of the S shaped characteristic curve was varied.


Microelectronics Journal | 2001

Optimal wavelet denoising for phonocardiograms

Sheila R. Messer; John Agzarian; Derek Abbott

Phonocardiograms (PCGs), recordings of heart sounds, have many advantages over traditional auscultation in that they may be replayed and analysed for spectral and frequency information. PCG is not a widely used diagnostic tool as it could be. One of the major problems with PCG is noise corruption. Many sources of noise may pollute a PCG including foetal breath sounds if the subject is pregnant, lung and breath sounds, environmental noise and noise from contact between the recording device and the skin. An electronic stethoscope is used to record heart sounds and the problem of extracting noise from the signal is addressed via the use of wavelets and averaging. Using the discrete wavelet transform, the signal is decomposed. Due to the efficient decomposition of heart signals, their wavelet coefficients tend to be much larger than those due to noise. Thus, coefficients below a certain level are regarded as noise and are thresholded out. The signal can then be reconstructed without significant loss of information in the signal content. The questions that this study attempts to answer are which wavelet families, levels of decomposition, and thresholding techniques best remove the noise in a PCG. The use of averaging in combination with wavelet denoising is also addressed. Possible applications of the Hilbert transform to heart sound analysis are discussed.


IEEE Sensors Journal | 2014

High-Sensitivity Metamaterial-Inspired Sensor for Microfluidic Dielectric Characterization

Amir Ebrahimi; Withawat Withayachumnankul; Said F. Al-Sarawi; Derek Abbott

A new metamaterial-inspired microwave microfluidic sensor is proposed in this paper. The main part of the device is a microstrip coupled complementary split-ring resonator (CSRR). At resonance, a strong electric field will be established along the sides of CSRR producing a very sensitive area to a change in the nearby dielectric material. A micro-channel is positioned over this area for microfluidic sensing. The liquid sample flowing inside the channel modifies the resonance frequency and peak attenuation of the CSRR resonance. The dielectric properties of the liquid sample can be estimated by establishing an empirical relation between the resonance characteristics and the sample complex permittivity. The designed microfluidic sensor requires a very small amount of sample for testing since the cross-sectional area of the sensing channel is over five orders of magnitude smaller than the square of the wavelength. The proposed microfluidic sensing concept is compatible with lab-on-a-chip platforms owing to its compactness.

Collaboration


Dive into the Derek Abbott's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Azhar Iqbal

University of Adelaide

View shared research outputs
Top Co-Authors

Avatar

Mark D. McDonnell

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge