Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek C. Radisky is active.

Publication


Featured researches published by Derek C. Radisky.


Nature | 2005

Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability

Derek C. Radisky; Dinah Levy; Laurie E. Littlepage; Hong Liu; Celeste M. Nelson; Jimmie E. Fata; Devin Leake; Elizabeth L. Godden; Donna G. Albertson; M. Angela Nieto; Zena Werb; Mina J. Bissell

The tumour microenvironment can be a potent carcinogen, not only by facilitating cancer progression and activating dormant cancer cells, but also by stimulating tumour formation. We have previously investigated stromelysin-1/matrix metalloproteinase-3 (MMP-3), a stromal enzyme upregulated in many breast tumours, and found that MMP-3 can cause epithelial–mesenchymal transition (EMT) and malignant transformation in cultured cells, and genomically unstable mammary carcinomas in transgenic mice. Here we explain the molecular pathways by which MMP-3 exerts these effects: exposure of mouse mammary epithelial cells to MMP-3 induces the expression of an alternatively spliced form of Rac1, which causes an increase in cellular reactive oxygen species (ROS). The ROS stimulate the expression of the transcription factor Snail and EMT, and cause oxidative damage to DNA and genomic instability. These findings identify a previously undescribed pathway in which a component of the breast tumour microenvironment alters cellular structure in culture and tissue structure in vivo, leading to malignant transformation.


Journal of Cell Science | 2005

Epithelial-mesenchymal transition

Derek C. Radisky

The epithelial-mesenchymal transition (EMT) is an orchestrated series of events in which cell-cell and cell-extracellular matrix (ECM) interactions are altered to release epithelial cells from the surrounding tissue, the cytoskeleton is reorganized to confer the ability to move through a three-


Cancer Research | 2009

Immune-induced epithelial to mesenchymal transition in vivo generates breast cancer stem cells

Marta Santisteban; Jennifer M. Reiman; Michael K. Asiedu; Marshall Behrens; Aziza Nassar; Kimberly R. Kalli; Paul Haluska; James N. Ingle; Lynn C. Hartmann; Masoud H. Manjili; Derek C. Radisky; Soldano Ferrone; Keith L. Knutson

The breast cancer stem cell (BCSC) hypotheses suggest that breast cancer is derived from a single tumor-initiating cell with stem-like properties, but the source of these cells is unclear. We previously observed that induction of an immune response against an epithelial breast cancer led in vivo to the T-cell-dependent outgrowth of a tumor, the cells of which had undergone epithelial to mesenchymal transition (EMT). The resulting mesenchymal tumor cells had a CD24(-/lo)CD44(+) phenotype, consistent with BCSCs. In the present study, we found that EMT was induced by CD8 T cells and the resulting tumors had characteristics of BCSCs, including potent tumorigenicity, ability to reestablish an epithelial tumor, and enhanced resistance to drugs and radiation. In contrast to the hierarchal cancer stem cell hypothesis, which suggests that breast cancer arises from the transformation of a resident tissue stem cell, our results show that EMT can produce the BCSC phenotype. These findings have several important implications related to disease progression and relapse.


Journal of Biological Chemistry | 1999

The Yeast Frataxin Homologue Mediates Mitochondrial Iron Efflux EVIDENCE FOR A MITOCHONDRIAL IRON CYCLE

Derek C. Radisky; Michael C. Babcock; Jerry Kaplan

Mutations in the nuclear gene encoding the mitochondrial protein frataxin are responsible for the neurological disorder Friedreich ataxia (FA). Yeast strains with a deletion in the frataxin homologue YFH1 accumulate excess iron in mitochondria and demonstrate mitochondrial damage. We show that in the absence of YFH1, mitochondrial damage is proportional to the concentration and duration of exposure to extracellular iron, establishing mitochondrial iron accumulation as causal to mitochondrial damage. Reintroduction of YFH1 results in the rapid export of accumulated mitochondrial iron into the cytosol as free, non-heme bound iron, demonstrating that mitochondrial iron in the yeast FA model can be made bioavailable. These results demonstrate a mitochondrial iron cycle in which Yfh1p regulates mitochondrial iron efflux.


Journal of Mammary Gland Biology and Neoplasia | 2010

Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition in Breast Cancer

Evette S. Radisky; Derek C. Radisky

Matrix metalloproteinases (MMPs) degrade and modify the extracellular matrix (ECM) as well as cell-ECM and cell-cell contacts, facilitating detachment of epithelial cells from the surrounding tissue. MMPs play key functions in embryonic development and mammary gland branching morphogenesis, but they are also upregulated in breast cancer, where they stimulate tumorigenesis, cancer cell invasion and metastasis. MMPs have been investigated as potential targets for cancer therapy, but clinical trials using broad-spectrum MMP inhibitors yielded disappointing results, due in part to lack of specificity toward individual MMPs and specific stages of tumor development. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells take on the characteristics of invasive mesenchymal cells, and activation of EMT has been implicated in tumor progression. Recent findings have implicated MMPs as promoters and mediators of developmental and pathogenic EMT processes in the breast. In this review, we will summarize recent studies showing how MMPs activate EMT in mammary gland development and in breast cancer, and how MMPs mediate breast cancer cell motility, invasion, and EMT-driven breast cancer progression. We also suggest approaches to inhibit these MMP-mediated malignant processes for therapeutic benefit.


Journal of Cellular Biochemistry | 2007

Fibrosis and cancer: Do myofibroblasts come also from epithelial cells via EMT?

Derek C. Radisky; Paraic A. Kenny; Mina J. Bissell

Myofibroblasts produce and modify the extracellular matrix (ECM), secrete angiogenic and pro‐inflammatory factors, and stimulate epithelial cell proliferation and invasion. Myofibroblasts are normally induced transiently during wound healing, but inappropriate induction of myofibroblasts causes organ fibrosis, which greatly enhances the risk of subsequent cancer development. As myofibroblasts are also found in the reactive tumor stroma, the processes involved in their development and activation are an area of active investigation. Emerging evidence suggests that a major source of fibrosis‐ and tumor‐associated myofibroblasts is through transdifferentiation from non‐malignant epithelial or epithelial‐derived carcinoma cells through epithelial‐mesenchymal transition (EMT). This review will focus on the role of EMT in fibrosis, considered in the context of recent studies showing that exposure of epithelial cells to matrix metalloproteinases (MMPs) can lead to increased levels of cellular reactive oxygen species (ROS) that stimulate transdifferentiation to myofibroblast‐like cells. As deregulated MMP expression and increased cellular ROS are characteristic of both fibrosis and malignancy, these studies suggest that increased MMP expression may stimulate fibrosis, tumorigenesis, and tumor progression by inducing a specialized EMT in which epithelial cells transdifferentiate into activated myofibroblasts. This connection provides a new perspective on the development of the fibrosis and tumor microenvironments. J. Cell. Biochem. 101: 830–839, 2007.


Archive | 1993

Biomedical Potential of Marine Natural Products

Chris M. Ireland; Brent R. Copp; Mark P. Foster; Leonard A. McDonald; Derek C. Radisky; J. Christopher Swersey

Marine natural products, the secondary or nonprimary metabolites produced by organisms that live in the sea, have received increasing attention from chemists and pharmacologists during the last two decades. Interest on the part of chemists has been twofold: natural products chemists have probed marine organisms as sources of new and unusual organic molecules, while synthetic chemists have followed by targeting these novel structures for development of new analogs and new synthetic methodologies and strategies (Albizati et al., 1990). The rationale for investigating the chemistry of marine organisms has changed over the past several decades. Early investigations were largely of a “phytochemical” nature, reporting detailed metabolite profiles similar to those reported for terrestrial plants in previous decades. However, analogous to investigations of terrestrial plants, more recent studies of marine organisms have focused on their potential applications, particularly to the treatment of human disease and control of agricultural pests (Fautin, 1988). Pharmacological evaluations of marine natural products have likewise undergone an evolution over the past two decades: beginning with the early investigations of toxins, followed by studies of cytotoxic and antitumor activity, to the present day, where a myriad of activities based on whole-animal models and receptor-binding assays are being pursued. The intent of this chapter is to look back at the evolution of biomedically oriented natural product studies of marine organisms, to chronicle the key developments, discoveries, and advances in the level of sophistication that have fueled further interest in this field, and finally to look forward at the future biomedical potential of marine natural products.


Journal of Cell Biology | 2004

Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells

Hong-Hong Liu; Derek C. Radisky; Fei Wang; Mina J. Bissell

Loss of tissue polarity and increased proliferation are the characteristic alterations of the breast tumor phenotype. To investigate these processes, we used a three-dimensional (3D) culture system in which malignant human breast cells can be reverted to a normal phenotype by exposure to inhibitors of phosphatidylinositol 3-kinase (PI3K). Using this assay, we find that Akt and Rac1 act as downstream effectors of PI3K and function as control points of cellular proliferation and tissue polarity, respectively. Our results also demonstrate that the PI3K signaling pathway is an integral component of the overall signaling network induced by growth in 3D, as reversion affected by inhibition of PI3K signaling also down-modulates the endogenous levels of β1 integrin and epidermal growth factor receptor, the upstream modulators of PI3K, and up-regulates PTEN, the antagonist of PI3K. These findings reveal key events of the PI3K pathway that play distinct roles to maintain tissue polarity and that when disrupted are instrumental in the malignant phenotype.


Nature Reviews Clinical Oncology | 2008

Mechanisms of Disease: epithelial–mesenchymal transition—does cellular plasticity fuel neoplastic progression?

Eva A. Turley; Mandana Veiseh; Derek C. Radisky; Mina J. Bissell

Epithelial–mesenchymal transition (EMT) is a phenotypic conversion that facilitates organ morphogenesis and tissue remodeling in physiological processes, such as embryonic development and wound healing. A similar phenotypic conversion is also detected in fibrotic diseases and neoplasia, and is associated with disease progression. EMT in cancer epithelial cells often seems to be an incomplete and bidirectional process. In this Review, we discuss the phenomenon of EMT as it pertains to tumor development, focusing on exceptions to the commonly held rule that EMT promotes invasion and metastasis. We also highlight the role of RAS-controlled signaling mediators, ERK1, ERK2 and phosphatidylinositol 3-kinase, as microenvironmental responsive regulators of EMT.


Clinical & Experimental Metastasis | 2008

Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development.

Lidiya Orlichenko; Derek C. Radisky

Matrix metalloproteinases (MMPs) are a family of more than 28 enzymes that were initially identified on the basis of their ability to cleave most elements of the extracellular matrix (ECM) but have subsequently been found to be upregulated in nearly every tumor type. As digestion of the ECM is essential for tumor invasion and metastasis, MMPs have been studied for their role in these later stages of tumor development. More recently, exposure to these enzymes has been found to impact cellular signaling pathways that stimulate cell growth at early stages of tumor progression. MMPs have also been found to cleave intracellular targets and so inducing mitotic abnormalities and genomic instability. Emerging evidence indicates that tumor-associated MMPs can also stimulate processes associated with epithelial-mesenchymal transition (EMT), a developmental process that is activated in tumor cells during cell invasion and metastasis. Investigations of potential therapeutic MMP inhibitors aimed at blocking the protumorigenic tissue alterations induced by MMPs have been complicated by the side effects associated with nonspecific inhibition of normal physiological processes; recent investigations have shown how delineation of the extracellular targets and intracellular signaling pathways by which MMP action on cancer cells can induce EMT provides insight into novel therapeutic targets. Here, we provide an overview of recent findings of MMP action in tumors and the mechanisms by which MMPs induce both phenotypic and genotypic alterations that facilitate tumor progression.

Collaboration


Dive into the Derek C. Radisky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mina J. Bissell

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge