Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek E. Moormeier is active.

Publication


Featured researches published by Derek E. Moormeier.


Applied and Environmental Microbiology | 2013

Use of Microfluidic Technology To Analyze Gene Expression during Staphylococcus aureus Biofilm Formation Reveals Distinct Physiological Niches

Derek E. Moormeier; Jennifer L. Endres; Ethan E. Mann; Marat R. Sadykov; Alexander R. Horswill; Kelly C. Rice; Paul D. Fey; Kenneth W. Bayles

ABSTRACT The Staphylococcus aureus cid and lrg operons play significant roles in the control of autolysis and accumulation of extracellular genomic DNA (eDNA) during biofilm development. Although the molecular mechanisms mediating this control are only beginning to be revealed, it is clear that cell death must be limited to a subfraction of the biofilm population. In the present study, we tested the hypothesis that cid and lrg expression varies during biofilm development as a function of changes in the availability of oxygen. To examine cid and lrg promoter activity during biofilm development, fluorescent reporter fusion strains were constructed and grown in a BioFlux microfluidic system, generating time-lapse epifluorescence images of biofilm formation, which allows the spatial and temporal localization of gene expression. Consistent with cid induction under hypoxic conditions, the cid::gfp fusion strain expressed green fluorescent protein predominantly within the interior of the tower structures, similar to the pattern of expression observed with a strain carrying a gfp fusion to the hypoxia-induced promoter controlling the expression of the lactose dehydrogenase gene. The lrg promoter was also expressed within towers but appeared more diffuse throughout the tower structures, indicating that it was oxygen independent. Unexpectedly, the results also demonstrated the existence of tower structures with different expression phenotypes and physical characteristics, suggesting that these towers exhibit different metabolic activities. Overall, the findings presented here support a model in which oxygen is important in the spatial and temporal control of cid expression within a biofilm and that tower structures formed during biofilm development exhibit metabolically distinct niches.


Mbio | 2014

Temporal and Stochastic Control of Staphylococcus aureus Biofilm Development

Derek E. Moormeier; Jeffrey L. Bose; Alexander R. Horswill; Kenneth W. Bayles

ABSTRACT Biofilm communities contain distinct microniches that result in metabolic heterogeneity and variability in gene expression. Previously, these niches were visualized within Staphylococcus aureus biofilms by observing differential expression of the cid and lrg operons during tower formation. In the present study, we examined early biofilm development and identified two new stages (designated “multiplication” and “exodus”) that were associated with changes in matrix composition and a distinct reorganization of the cells as the biofilm matured. The initial attachment and multiplication stages were shown to be protease sensitive but independent of most cell surface-associated proteins. Interestingly, after 6 h of growth, an exodus of the biofilm population that followed the transition of the biofilm to DNase I sensitivity was demonstrated. Furthermore, disruption of the gene encoding staphylococcal nuclease (nuc) abrogated this exodus event, causing hyperproliferation of the biofilm and disrupting normal tower development. Immediately prior to the exodus event, S. aureus cells carrying a nuc::gfp promoter fusion demonstrated Sae-dependent expression but only in an apparently random subpopulation of cells. In contrast to the existing model for tower development in S. aureus, the results of this study suggest the presence of a Sae-controlled nuclease-mediated exodus of biofilm cells that is required for the development of tower structures. Furthermore, these studies indicate that the differential expression of nuc during biofilm development is subject to stochastic regulatory mechanisms that are independent of the formation of metabolic microniches. IMPORTANCE In this study, we provide a novel view of four early stages of biofilm formation by the human pathogen Staphylococcus aureus. We identified an initial nucleoprotein matrix during biofilm development that is DNase I insensitive until a critical point when a nuclease-mediated exodus of the population is induced prior to tower formation. Unlike the previously described dispersal of cells that occurs after tower development, we found that the mechanism controlling this exodus event is dependent on the Sae regulatory system and independent of Agr. In addition, we revealed that the gene encoding the secreted staphylococcal nuclease was expressed in only a subpopulation of cells, consistent with a model in which biofilms exhibit multicellular characteristics, including the presence of specialized cells and a division of labor that imparts functional consequences to the remainder of the population. In this study, we provide a novel view of four early stages of biofilm formation by the human pathogen Staphylococcus aureus. We identified an initial nucleoprotein matrix during biofilm development that is DNase I insensitive until a critical point when a nuclease-mediated exodus of the population is induced prior to tower formation. Unlike the previously described dispersal of cells that occurs after tower development, we found that the mechanism controlling this exodus event is dependent on the Sae regulatory system and independent of Agr. In addition, we revealed that the gene encoding the secreted staphylococcal nuclease was expressed in only a subpopulation of cells, consistent with a model in which biofilms exhibit multicellular characteristics, including the presence of specialized cells and a division of labor that imparts functional consequences to the remainder of the population.


The Journal of Infectious Diseases | 2014

Impact of Vancomycin on sarA-Mediated Biofilm Formation: Role in Persistent Endovascular Infections Due to Methicillin-Resistant Staphylococcus aureus

Wessam Abdelhady; Arnold S. Bayer; Kati Seidl; Derek E. Moormeier; Kenneth W. Bayles; Ambrose L. Cheung; Michael R. Yeaman; Yan Q. Xiong

BACKGROUND Staphylococcus aureus is the most common cause of endovascular infections. The staphylococcal accessory regulator A locus (sarA) is a major virulence determinant that may potentially impact methicillin-resistant S. aureus (MRSA) persistence in such infections via its influence on biofilm formation. METHODS Two healthcare-associated MRSA isolates from patients with persistent bacteremia and 2 prototypical community-acquired MRSA strains, as well as their respective isogenic sarA mutants, were studied for in vitro biofilm formation, fibronectin-binding capacity, autolysis, and protease and nuclease activities. These assays were done in the presence or absence of sub-minimum inhibitory concentrations (MICs) of vancomycin. In addition, these strain pairs were compared for intrinsic virulence and responses to vancomycin therapy in experimental infective endocarditis, a prototypical biofilm model. RESULTS All sarA mutants displayed significantly reduced biofilm formation and binding to fibronectin but increased protease production in vitro, compared with their respective parental strains. Interestingly, exposure to sub-MICs of vancomycin significantly promoted biofilm formation and fibronectin-binding in parental strains but not in sarA mutants. In addition, all sarA mutants became exquisitely susceptible to vancomycin therapy, compared with their respective parental strains, in the infective endocarditis model. CONCLUSIONS These observations suggest that sarA activation is important in persistent MRSA endovascular infection, potentially in the setting of biofilm formation.


Journal of Bacteriology | 2013

Inactivation of the Pta-AckA Pathway Causes Cell Death in Staphylococcus aureus

Marat R. Sadykov; Vinai Chittezham Thomas; Darrell D. Marshall; Christopher J. Wenstrom; Derek E. Moormeier; Todd J. Widhelm; Austin S. Nuxoll; Robert Powers; Kenneth W. Bayles

During growth under conditions of glucose and oxygen excess, Staphylococcus aureus predominantly accumulates acetate in the culture medium, suggesting that the phosphotransacetylase-acetate kinase (Pta-AckA) pathway plays a crucial role in bacterial fitness. Previous studies demonstrated that these conditions also induce the S. aureus CidR regulon involved in the control of cell death. Interestingly, the CidR regulon is comprised of only two operons, both encoding pyruvate catabolic enzymes, suggesting an intimate relationship between pyruvate metabolism and cell death. To examine this relationship, we introduced ackA and pta mutations in S. aureus and tested their effects on bacterial growth, carbon and energy metabolism, cid expression, and cell death. Inactivation of the Pta-AckA pathway showed a drastic inhibitory effect on growth and caused accumulation of dead cells in both pta and ackA mutants. Surprisingly, inactivation of the Pta-AckA pathway did not lead to a decrease in the energy status of bacteria, as the intracellular concentrations of ATP, NAD(+), and NADH were higher in the mutants. However, inactivation of this pathway increased the rate of glucose consumption, led to a metabolic block at the pyruvate node, and enhanced carbon flux through both glycolysis and the tricarboxylic acid (TCA) cycle. Intriguingly, disruption of the Pta-AckA pathway also induced the CidR regulon, suggesting that activation of alternative pyruvate catabolic pathways could be an important survival strategy for the mutants. Collectively, the results of this study demonstrate the indispensable role of the Pta-AckA pathway in S. aureus for maintaining energy and metabolic homeostasis during overflow metabolism.


Molecular Microbiology | 2015

Identification of the amino acids essential for LytSR-mediated signal transduction in Staphylococcus aureus and their roles in biofilm-specific gene expression.

McKenzie K. Lehman; Jeffrey L. Bose; Batu K. Sharma-Kuinkel; Derek E. Moormeier; Jennifer L. Endres; Marat R. Sadykov; Indranil Biswas; Kenneth W. Bayles

Recent studies have demonstrated that expression of the Staphylococcus aureus lrgAB operon is specifically localized within tower structures during biofilm development. To gain a better understanding of the mechanisms underlying this spatial control of lrgAB expression, we carried out a detailed analysis of the LytSR two‐component system. Specifically, a conserved aspartic acid (Asp53) of the LytR response regulator was shown to be the target of phosphorylation, which resulted in enhanced binding to the lrgAB promoter and activation of transcription. In addition, we identified His390 of the LytS histidine kinase as the site of autophosphorylation and Asn394 as a critical amino acid involved in phosphatase activity. Interestingly, LytS‐independent activation of LytR was observed during planktonic growth, with acetyl phosphate acting as a phosphodonor to LytR. In contrast, mutations disrupting the function of LytS prevented tower‐specific lrgAB expression, providing insight into the physiologic environment within these structures. In addition, overactivation of LytR led to increased lrgAB promoter activity during planktonic and biofilm growth and a change in biofilm morphology. Overall, the results of this study are the first to define the LytSR signal transduction pathway, as well as determine the metabolic context within biofilm tower structures that triggers these signaling events.


Molecular Microbiology | 2017

Staphylococcus aureus biofilm: a complex developmental organism

Derek E. Moormeier; Kenneth W. Bayles

Chronic biofilm‐associated infections caused by Staphylococcus aureus often lead to significant increases in morbidity and mortality, particularly when associated with indwelling medical devices. This has triggered a great deal of research attempting to understand the molecular mechanisms that control S. aureus biofilm formation and the basis for the recalcitrance of these multicellular structures to antibiotic therapy. The purpose of this review is to summarize our current understanding of S. aureus biofilm development, focusing on the description of a newly‐defined, five‐stage model of biofilm development and the mechanisms required for each stage. Importantly, this model includes an alternate view of the processes involved in microcolony formation in S. aureus and suggests that these structures originate as a result of stochastically regulated metabolic heterogeneity and proliferation within a maturing biofilm population, rather than a subtractive process involving the release of cell clusters from a thick, unstructured biofilm. Importantly, it is proposed that this new model of biofilm development involves the genetically programmed generation of metabolically distinct subpopulations of cells, resulting in an overall population that is better able to adapt to rapidly changing environmental conditions.


Infection and Immunity | 2016

Cyclic di-AMP Released from Staphylococcus aureus Biofilm Induces a Macrophage Type I Interferon Response

Casey M. Gries; Eric L. Bruger; Derek E. Moormeier; Tyler D. Scherr; Christopher M. Waters; Tammy Kielian

ABSTRACT Staphylococcus aureus is a leading cause of community- and nosocomial-acquired infections, with a propensity for biofilm formation. S. aureus biofilms actively skew the host immune response toward an anti-inflammatory state; however, the biofilm effector molecules and the mechanism(s) of action responsible for this phenomenon remain to be fully defined. The essential bacterial second messenger cyclic diadenylate monophosphate (c-di-AMP) is an emerging pathogen-associated molecular pattern during intracellular bacterial infections, as c-di-AMP secretion into the infected host cytosol induces a robust type I interferon (IFN) response. Type I IFNs have the potential to exacerbate infectious outcomes by promoting anti-inflammatory effects; however, the type I IFN response to S. aureus biofilms is unknown. Additionally, while several intracellular proteins function as c-di-AMP receptors in S. aureus, it has yet to be determined if any extracellular role for c-di-AMP exists and its release during biofilm formation has not yet been demonstrated. This study examined the possibility that c-di-AMP released during S. aureus biofilm growth polarizes macrophages toward an anti-inflammatory phenotype via type I interferon signaling. DacA, the enzyme responsible for c-di-AMP synthesis in S. aureus, was highly expressed during biofilm growth, and 30 to 50% of total c-di-AMP produced from S. aureus biofilm was released extracellularly due to autolytic activity. S. aureus biofilm c-di-AMP release induced macrophage type I IFN expression via a STING-dependent pathway and promoted S. aureus intracellular survival in macrophages. These findings identify c-di-AMP as another mechanism for how S. aureus biofilms promote macrophage anti-inflammatory activity, which likely contributes to biofilm persistence.


Methods of Molecular Biology | 2014

Examination of Staphylococcus epidermidis Biofilms Using Flow-Cell Technology

Derek E. Moormeier; Kenneth W. Bayles

A common in vitro method to study Staphylococcus epidermidis biofilm development is to allow the bacteria to attach and grow on a solid surface in the presence of a continuous flow of nutrients. Under these conditions, the bacteria progress through a series of developmental steps, ultimately forming a multicellular structure containing differentiated cell populations. The observation of the biofilm at various time-points throughout this process provides a glimpse of the temporal changes that occur. Furthermore, use of metabolic stains and fluorescent reporters provides insight into the physiologic and transcriptional changes that occur within a developing biofilm. Currently, there are multiple systems available to assess biofilm development, each with advantages and disadvantages depending on the questions being asked. In this chapter, we describe the use of two separate flow-cell systems used to evaluate the developmental characteristics of staphylococcal biofilms: the FC270 flow-cell system from BioSurface Technologies, Corp. and the BioFlux1000 microfluidic flow-cell system from Fluxion Bioscience, Inc.


Journal of Bacteriology | 2018

Nutritional regulation of the Sae two-component system by CodY in Staphylococcus aureus

Kevin D. Mlynek; William E. Sause; Derek E. Moormeier; Marat R. Sadykov; Kurt R. Hill; Victor J. Torres; Kenneth W. Bayles; Shaun R. Brinsmade

Staphylococcus aureus subverts innate defenses during infection in part by killing host immune cells to exacerbate disease. This human pathogen intercepts host cues and activates a transcriptional response via the S. aureus exoprotein expression (SaeR/SaeS [SaeR/S]) two-component system to secrete virulence factors critical for pathogenesis. We recently showed that the transcriptional repressor CodY adjusts nuclease (nuc) gene expression via SaeR/S, but the mechanism remained unknown. Here, we identified two CodY binding motifs upstream of the sae P1 promoter, which suggested direct regulation by this global regulator. We show that CodY shares a binding site with the positive activator SaeR and that alleviating direct CodY repression at this site is sufficient to abrogate stochastic expression, suggesting that CodY represses sae expression by blocking SaeR binding. Epistasis experiments support a model that CodY also controls sae indirectly through Agr and Rot-mediated repression of the sae P1 promoter. We also demonstrate that CodY repression of sae restrains production of secreted cytotoxins that kill human neutrophils. We conclude that CodY plays a previously unrecognized role in controlling virulence gene expression via SaeR/S and suggest a mechanism by which CodY acts as a master regulator of pathogenesis by tying nutrient availability to virulence gene expression.IMPORTANCE Bacterial mechanisms that mediate the switch from a commensal to pathogenic lifestyle are among the biggest unanswered questions in infectious disease research. Since the expression of most virulence genes is often correlated with nutrient depletion, this implies that virulence is a response to the lack of nourishment in host tissues and that pathogens like S. aureus produce virulence factors in order to gain access to nutrients in the host. Here, we show that specific nutrient depletion signals appear to be funneled to the SaeR/S system through the global regulator CodY. Our findings reveal a strategy by which S. aureus delays the production of immune evasion and immune-cell-killing proteins until key nutrients are depleted.


Bulletin of the American Physical Society | 2013

Measurement of fluid dynamic loading on staphylococci bacteria bio-film structures using

Erica Sherman; Derek E. Moormeier; Kenneth W. Bayles; John Davidson; Sangjin Ryu; Timothy Wei

Collaboration


Dive into the Derek E. Moormeier's collaboration.

Top Co-Authors

Avatar

Kenneth W. Bayles

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marat R. Sadykov

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Timothy Wei

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar

Alexander R. Horswill

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey L. Bose

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Endres

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Austin S. Nuxoll

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Batu K. Sharma-Kuinkel

University of Nebraska Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge