Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek Gatherer is active.

Publication


Featured researches published by Derek Gatherer.


Archives of Virology | 2014

The family Parvoviridae

Susan F. Cotmore; Mavis Agbandje-McKenna; John A. Chiorini; D. V. Mukha; David J. Pintel; Jianming Qiu; Maria Söderlund-Venermo; Peter Tattersall; Peter Tijssen; Derek Gatherer; Andrew J. Davison

A set of proposals to rationalize and extend the taxonomy of the family Parvoviridae is currently under review by the International Committee on Taxonomy of Viruses (ICTV). Viruses in this family infect a wide range of hosts, as reflected by the longstanding division into two subfamilies: the Parvovirinae, which contains viruses that infect vertebrate hosts, and the Densovirinae, encompassing viruses that infect arthropod hosts. Using a modified definition for classification into the family that no longer demands isolation as long as the biological context is strong, but does require a near-complete DNA sequence, 134 new viruses and virus variants were identified. The proposals introduce new species and genera into both subfamilies, resolve one misclassified species, and improve taxonomic clarity by employing a series of systematic changes. These include identifying a precise level of sequence similarity required for viruses to belong to the same genus and decreasing the level of sequence similarity required for viruses to belong to the same species. These steps will facilitate recognition of the major phylogenetic branches within genera and eliminate the confusion caused by the near-identity of species and viruses. Changes to taxon nomenclature will establish numbered, non-Latinized binomial names for species, indicating genus affiliation and host range rather than recapitulating virus names. Also, affixes will be included in the names of genera to clarify subfamily affiliation and reduce the ambiguity that results from the vernacular use of “parvovirus” and “densovirus” to denote multiple taxon levels.


Journal of General Virology | 2014

The 2014 Ebola virus disease outbreak in West Africa.

Derek Gatherer

On 23 March 2014, the World Health Organization issued its first communiqué on a new outbreak of Ebola virus disease (EVD), which began in December 2013 in Guinée Forestière (Forested Guinea), the eastern sector of the Republic of Guinea. Located on the Atlantic coast of West Africa, Guinea is the first country in this geographical region in which an outbreak of EVD has occurred, leaving aside the single case reported in Ivory Coast in 1994. Cases have now also been confirmed across Guinea as well as in the neighbouring Republic of Liberia. The appearance of cases in the Guinean capital, Conakry, and the transit of another case through the Liberian capital, Monrovia, presents the first large urban setting for EVD transmission. By 20 April 2014, 242 suspected cases had resulted in a total of 147 deaths in Guinea and Liberia. The causative agent has now been identified as an outlier strain of Zaire Ebola virus. The full geographical extent and degree of severity of the outbreak, its zoonotic origins and its possible spread to other continents are sure to be subjects of intensive discussion over the next months.


Journal of General Virology | 2016

Zika virus: a previously slow pandemic spreads rapidly through the Americas.

Derek Gatherer; Alain Kohl

Zika virus (family Flaviviridae) is an emerging arbovirus. Spread by Aedes mosquitoes, it was first discovered in Uganda in 1947, and later in humans elsewhere in sub-Saharan Africa, arriving in south-east Asia at latest by the mid-twentieth century. In the twenty-first century, it spread across the Pacific islands reaching South America around 2014. Since then it has spread rapidly northwards reaching Mexico in November 2015. Its clinical profile is that of a dengue-like febrile illness, but associations with Guillain-Barré syndrome and microcephaly have appeared recently. The final geographical range and ultimate clinical impact of Zika virus are still a matter for speculation.


Journal of Clinical Virology | 2009

The 2009 H1N1 influenza outbreak in its historical context.

Derek Gatherer

Of the 16 known serotypes of influenza A haemagglutinin, 6 have been isolated from humans at the molecular level (H1, H2, H3, H5, H7, H9). 3 of these have been involved in past pandemics (H1, H2, H3). Traditional pandemic surveillance has focussed on monitoring antigenic shift, meaning the re-assortment of novel haemagglutinins into seasonal human influenza A viruses during rare events of double infection with seasonal and zoonotic strains. H5, from avian H5N1 influenza, has been the major cause for concern in recent years. However, the 2009 H1N1 zoonotic event demonstrates that even serotypes already encountered in past human pandemics may constitute new pandemic threats. The protein sequence divergence of the 2009 zoonotic H1 from human seasonal influenza H1 is around 20-24%. A similar level of divergence is found between the 2009 H1 and European swine flu. By contrast, its divergence from North American swine flu strains is around 1-9%. Given that the divergence between H1 and its nearest serotype neighbour H2 is around 40-46%, the 2009 H1 may be broadly considered as halfway towards a new serotype. The current situation is one of antigenic pseudo-shift.


Proceedings of the National Academy of Sciences of the United States of America | 2011

High-resolution human cytomegalovirus transcriptome

Derek Gatherer; Sepher Seirafian; Charles Cunningham; Mary Holton; Derrick J. Dargan; Katarina Baluchova; Ralph D. Hector; Julie Galbraith; Pawel Herzyk; Gavin William Grahame Wilkinson; Andrew J. Davison

Deep sequencing was used to bring high resolution to the human cytomegalovirus (HCMV) transcriptome at the stage when infectious virion production is under way, and major findings were confirmed by extensive experimentation using conventional techniques. The majority (65.1%) of polyadenylated viral RNA transcription is committed to producing four noncoding transcripts (RNA2.7, RNA1.2, RNA4.9, and RNA5.0) that do not substantially overlap designated protein-coding regions. Additional noncoding RNAs that are transcribed antisense to protein-coding regions map throughout the genome and account for 8.7% of transcription from these regions. RNA splicing is more common than recognized previously, which was evidenced by the identification of 229 potential donor and 132 acceptor sites, and it affects 58 protein-coding genes. The great majority (94) of 96 splice junctions most abundantly represented in the deep-sequencing data was confirmed by RT-PCR or RACE or supported by involvement in alternative splicing. Alternative splicing is frequent and particularly evident in four genes (RL8A, UL74A, UL124, and UL150A) that are transcribed by splicing from any one of many upstream exons. The analysis also resulted in the annotation of four previously unrecognized protein-coding regions (RL8A, RL9A, UL150A, and US33A), and expression of the UL150A protein was shown in the context of HCMV infection. The overall conclusion, that HCMV transcription is complex and multifaceted, has implications for the potential sophistication of virus functionality during infection. The study also illustrates the key contribution that deep sequencing can make to the genomics of nuclear DNA viruses.


Journal of Virology | 2005

Integrating Reptilian Herpesviruses into the Family Herpesviridae

Duncan J. McGeoch; Derek Gatherer

ABSTRACT The phylogeny of reptilian herpesviruses (HVs) relative to mammalian and avian HVs was investigated by using available gene sequences and by alignment of encoded amino acid sequences and derivation of trees by maximum-likelihood and Bayesian methods. Phylogenetic loci were obtained for green turtle HV (GTHV) primarily on the basis of DNA polymerase (POL) and DNA binding protein sequences, and for lung-eye-trachea disease-associated HV (LETV) primarily from its glycoprotein B sequence; both have nodes on the branch leading to recognized species in the Alphaherpesvirinae subfamily and should be regarded as new members of that subfamily. A similar but less well defined locus was obtained for an iguanid HV based on a partial POL sequence. On the basis of short POL sequences (around 60 amino acid residues), it appeared likely that GTHV and LETV belong to a private clade and that three HVs of gerrhosaurs (plated lizards) are associated with the iguanid HV. Based on phylogenetic branching patterns for mammalian HV lineages that mirror those of host lineages, we estimated a date for the HV trees root of around 400 million years ago. Estimated dates for branching events in the development of reptilian, avian, and mammalian Alphaherpesvirinae lineages could plausibly be accounted for in part but not completely by ancient coevolution of these virus lines with reptilian lineages and with the development of birds and mammals from reptilian progenitors.


Human Genetics | 1986

Assignment of the gene for dyskeratosis congenita to Xq28

J. M. Connor; Derek Gatherer; F. C. Gray; Lindsay A. Pirrit; N. A. Affara

SummaryDyskeratosis congenita is an X-linked recessive disorder with diagnostic dermatological features, bone marrow hypofunction, and a predisposition to neoplasia in early adult life. Linkage analysis was undertaken in an extensive family with the condition using the Xg blood group and 17 cloned X chromosomal DNA sequences which recognise restriction fragment length polymorphisms (RFLPs). No recombination was observed between the locus for dyskeratosis congenita (DKC) and the RFLPs identified by DXS52 (St 14-1) (Zmax=3.33 at Θmax=0 with 95% confidence limits of 0 to 14 cM). Similarly no recombination was observed for the disease locus and F8 (Zmax=1.23 at Θmax=0) nor for DXS15 (Zmax=1.62 at Ήmax=0), but both of these markers were only informative in part of the family whereas DXS52 was fully informative. DXS52, DXS15, and F8 are known to be tightly linked and have previously been assigned to Xq28. Thus the gene for dyskeratosis congenita can be assigned to Xq28. These DNA sequence polymorphisms will be of clinical value for carrier detection and prenatal diagnosis.


Journal of Virology | 2014

Evolution and diversity in human herpes simplex virus genomes

Moriah L. Szpara; Derek Gatherer; Alejandro Ochoa; Benjamin D. Greenbaum; Aidan Dolan; Rory Bowden; Lynn W. Enquist; Matthieu Legendre; Andrew J. Davison

ABSTRACT Herpes simplex virus 1 (HSV-1) causes a chronic, lifelong infection in >60% of adults. Multiple recent vaccine trials have failed, with viral diversity likely contributing to these failures. To understand HSV-1 diversity better, we comprehensively compared 20 newly sequenced viral genomes from China, Japan, Kenya, and South Korea with six previously sequenced genomes from the United States, Europe, and Japan. In this diverse collection of passaged strains, we found that one-fifth of the newly sequenced members share a gene deletion and one-third exhibit homopolymeric frameshift mutations (HFMs). Individual strains exhibit genotypic and potential phenotypic variation via HFMs, deletions, short sequence repeats, and single-nucleotide polymorphisms, although the protein sequence identity between strains exceeds 90% on average. In the first genome-scale analysis of positive selection in HSV-1, we found signs of selection in specific proteins and residues, including the fusion protein glycoprotein H. We also confirmed previous results suggesting that recombination has occurred with high frequency throughout the HSV-1 genome. Despite this, the HSV-1 strains analyzed clustered by geographic origin during whole-genome distance analysis. These data shed light on likely routes of HSV-1 adaptation to changing environments and will aid in the selection of vaccine antigens that are invariant worldwide.


Journal of General Virology | 2010

Sequences of complete human cytomegalovirus genomes from infected cell cultures and clinical specimens

Charles Cunningham; Derek Gatherer; Birgitta Hilfrich; Katarina Baluchova; Derrick J. Dargan; Marian Thomson; Paul D. Griffiths; Gavin William Grahame Wilkinson; Thomas F. Schulz; Andrew J. Davison

We have assessed two approaches to sequencing complete human cytomegalovirus (HCMV) genomes (236 kbp) in DNA extracted from infected cell cultures (strains 3157, HAN13, HAN20 and HAN38) or clinical specimens (strains JP and 3301). The first approach involved amplifying genomes from the DNA samples as overlapping PCR products, sequencing these by the Sanger method, acquiring reads from a capillary instrument and assembling these using the Staden programs. The second approach involved generating sequence data from the DNA samples by using an Illumina Genome Analyzer (IGA), processing the filtered reads by reference-independent (de novo) assembly, utilizing the resulting sequence to direct reference-dependent assembly of the same data and finishing by limited PCR sequencing. Both approaches were successful. In particular, the investigation demonstrated the utility of IGA data for efficiently sequencing genomes from clinical samples containing as little as 3 % HCMV DNA. Analysis of the genome sequences obtained showed that each of the strains grown in cell culture was a mutant. Certain of the mutations were shared among strains from independent clinical sources, thus suggesting that they may have arisen in a common ancestor during natural infection. Moreover, one of the strains (JP) sequenced directly from a clinical specimen was mutated in two genes, one of which encodes a proposed immune-evasion function, viral interleukin-10. These observations imply that HCMV mutants exist in human infections.


Journal of General Virology | 2009

High-throughput sequence analysis of variants of human cytomegalovirus strains Towne and AD169.

Amanda J. Bradley; Nell S. Lurain; Peter Ghazal; Urmi Trivedi; Charles Cunningham; Katarina Baluchova; Derek Gatherer; Gavin William Grahame Wilkinson; Derrick J. Dargan; Andrew J. Davison

The genomes of commonly used variants of human cytomegalovirus (HCMV) strains Towne and AD169 each contain a substantial mutation in which a region (UL/b′) at the right end of the long unique region has been replaced by an inverted duplication of a region from the left end of the genome. Using high-throughput technology, we have sequenced HCMV strain Towne (ATCC VR-977) and confirmed the presence of two variants, one exhibiting the replacement in UL/b′ and the other intact in this region. Both variants are mutated in genes RL13, UL1, UL40, UL130, US1 and US9. We have also sequenced a novel AD169 variant (varUC) that is intact in UL/b′ except for a small deletion that affects genes UL144, UL142, UL141 and UL140. Like other AD169 variants, varUC is mutated in genes RL5A, RL13, UL36 and UL131A. A subpopulation of varUC contains an additional deletion affecting genes IRS1, US1 and US2.

Collaboration


Dive into the Derek Gatherer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge