Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek J. Fisher is active.

Publication


Featured researches published by Derek J. Fisher.


Journal of Bacteriology | 2006

Complete Sequencing and Diversity Analysis of the Enterotoxin-Encoding Plasmids in Clostridium perfringens Type A Non-Food-Borne Human Gastrointestinal Disease Isolates

Kazuaki Miyamoto; Derek J. Fisher; Jihong Li; Sameera Sayeed; Shigeru Akimoto; Bruce A. McClane

Enterotoxin-producing Clostridium perfringens type A isolates are an important cause of food poisoning and non-food-borne human gastrointestinal diseases, e.g., sporadic diarrhea (SPOR) and antibiotic-associated diarrhea (AAD). The enterotoxin gene (cpe) is usually chromosomal in food poisoning isolates but plasmid-borne in AAD/SPOR isolates. Previous studies determined that type A SPOR isolate F5603 has a plasmid (pCPF5603) carrying cpe, IS1151, and the beta2 toxin gene (cpb2), while type A SPOR isolate F4969 has a plasmid (pCPF4969) lacking cpb2 and IS1151 but carrying cpe and IS1470-like sequences. By completely sequencing these two cpe plasmids, the current study identified pCPF5603 as a 75.3-kb plasmid carrying 73 open reading frames (ORFs) and pCPF4969 as a 70.5-kb plasmid carrying 62 ORFs. These plasmids share an approximately 35-kb conserved region that potentially encodes virulence factors and carries ORFs found on the conjugative transposon Tn916. The 34.5-kb pCPF4969 variable region contains ORFs that putatively encode two bacteriocins and a two-component regulator similar to VirR/VirS, while the approximately 43.6-kb pCPF5603 variable region contains a functional cpb2 gene and several metabolic genes. Diversity studies indicated that other type A plasmid cpe+/IS1151 SPOR/AAD isolates carry a pCPF5603-like plasmid, while other type A plasmid cpe+/IS1470-like SPOR/AAD isolates carry a pCPF4969-like plasmid. Tn916-related ORFs similar to those in pCPF4969 (known to transfer conjugatively) were detected in the cpe plasmids of other type A SPOR/AAD isolates, as well as in representative C. perfringens type B to D isolates carrying other virulence plasmids, possibly suggesting that most or all C. perfringens virulence plasmids transfer conjugatively.


PLOS ONE | 2013

Site-Specific, Insertional Inactivation of incA in Chlamydia trachomatis Using a Group II Intron

Cayla M. Johnson; Derek J. Fisher

Chlamydia trachomatis is an obligate, intracellular bacterial pathogen that has until more recently remained recalcitrant to genetic manipulation. However, the field still remains hindered by the absence of tools to create selectable, targeted chromosomal mutations. Previous work with mobile group II introns demonstrated that they can be retargeted by altering DNA sequences within the intron’s substrate recognition region to create site-specific gene insertions. This platform (marketed as TargeTron™, Sigma) has been successfully employed in a variety of bacteria. We subsequently modified TargeTron™ for use in C. trachomatis and as proof of principle used our system to insertionally inactivate incA, a chromosomal gene encoding a protein required for homotypic fusion of chlamydial inclusions. C. trachomatis incA::GII(bla) mutants were selected with ampicillin and plaque purified clones were then isolated for genotypic and phenotypic analysis. PCR, Southern blotting, and DNA sequencing verified proper GII(bla) insertion, while continuous passaging in the absence of selection demonstrated that the insertion was stable. As seen with naturally occurring IncA− mutants, light and immunofluorescence microscopy confirmed the presence of non-fusogenic inclusions in cells infected with the incA::GII(bla) mutants at a multiplicity of infection greater than one. Lack of IncA production by mutant clones was further confirmed by Western blotting. Ultimately, the ease of retargeting the intron, ability to select for mutants, and intron stability in the absence of selection makes this method a powerful addition to the growing chlamydial molecular toolbox.


Journal of Bacteriology | 2013

Chlamydia trachomatis Transports NAD via the Npt1 ATP/ADP Translocase

Derek J. Fisher; Reinaldo E. Fernández; Anthony T. Maurelli

Obligate intracellular bacteria comprising the order Chlamydiales lack the ability to synthesize nucleotides de novo and must acquire these essential compounds from the cytosol of the host cell. The environmental protozoan endosymbiont Protochlamydia amoebophila UWE25 encodes five nucleotide transporters with specificities for different nucleotide substrates, including ATP, GTP, CTP, UTP, and NAD. In contrast, the human pathogen Chlamydia trachomatis encodes only two nucleotide transporters, the ATP/ADP translocase C. trachomatis Npt1 (Npt1(Ct)) and the nucleotide uniporter Npt2(Ct), which transports GTP, UTP, CTP, and ATP. The notable absence of a NAD transporter, coupled with the lack of alternative nucleotide transporters on the basis of bioinformatic analysis of multiple C. trachomatis genomes, led us to re-evaluate the previously characterized transport properties of Npt1(Ct). Using [adenylate-(32)P]NAD, we demonstrate that Npt1(Ct) expressed in Escherichia coli enables the transport of NAD with an apparent K(m) and V(max) of 1.7 μM and 5.8 nM mg(-1) h(-1), respectively. The K(m) for NAD transport is comparable to the K(m) for ATP transport of 2.2 μM, as evaluated in this study. Efflux and substrate competition assays demonstrate that NAD is a preferred substrate of Npt1(Ct) compared to ATP. These results suggest that during reductive evolution, the pathogenic chlamydiae lost individual nucleotide transporters, in contrast to their environmental endosymbiont relatives, without compromising their ability to obtain nucleotides from the host cytosol through relaxation of transport specificity. The novel properties of Npt1Ct and its conservation in chlamydiae make it a potential target for the development of antimicrobial compounds and a model for studying the evolution of transport specificity.


PLOS ONE | 2012

Uptake of Biotin by Chlamydia Spp. through the Use of a Bacterial Transporter (BioY) and a Host-Cell Transporter (SMVT)

Derek J. Fisher; Reinaldo E. Fernández; Nancy E. Adams; Anthony T. Maurelli

Chlamydia spp. are obligate intracellular Gram-negative bacterial pathogens that cause disease in humans and animals. Minor variations in metabolic capacity between species have been causally linked to host and tissue tropisms. Analysis of the highly conserved genomes of Chlamydia spp. reveals divergence in the metabolism of the essential vitamin biotin with genes for either synthesis (bioF_2ADB) and/or transport (bioY). Streptavidin blotting confirmed the presence of a single biotinylated protein in Chlamydia. As a first step in unraveling the need for divergent biotin acquisition strategies, we examined BioY (CTL0613) from C. trachomatis 434/Bu which is annotated as an S component of the type II energy coupling-factor transporters (ECF). Type II ECFs are typically composed of a transport specific component (S) and a chromosomally unlinked energy module (AT). Intriguingly, Chlamydia lack recognizable AT modules. Using 3H-biotin and recombinant E. coli expressing CTL0613, we demonstrated that biotin was transported with high affinity (a property of Type II ECFs previously shown to require an AT module) and capacity (apparent K(m) of 3.35 nM and V(max) of 55.1 pmol×min−1×mg−1). Since Chlamydia reside in a host derived membrane vacuole, termed an inclusion, we also sought a mechanism for transport of biotin from the cell cytoplasm into the inclusion vacuole. Immunofluorescence microscopy revealed that the mammalian sodium multivitamin transporter (SMVT), which transports lipoic acid, biotin, and pantothenic acid into cells, localizes to the inclusion. Since Chlamydia also are auxotrophic for lipoic and pantothenic acids, SMVT may be subverted by Chlamydia to move multiple essential compounds into the inclusion where BioY and another transporter(s) would be present to facilitate transport into the bacterium. Collectively, our data validates the first BioY from a pathogenic organism and describes a two-step mechanism by which Chlamydia transport biotin from the host cell into the bacterial cytoplasm.


Mbio | 2011

Identification and Characterization of the Chlamydia trachomatis L2 S-Adenosylmethionine Transporter

Rachel Binet; Reinaldo E. Fernández; Derek J. Fisher; Anthony T. Maurelli

ABSTRACT Methylation is essential to the physiology of all cells, including the obligate intracellular bacterium Chlamydia. Nevertheless, the methylation cycle is under strong reductive evolutionary pressure in Chlamydia. Only Parachlamydia acanthamoebae and Waddlia chondrophila genome sequences harbor homologs to metK, encoding the S-adenosylmethionine (SAM) synthetase required for synthesis of SAM, and to sahH, which encodes the S-adenosylhomocysteine (SAH) hydrolase required for detoxification of SAH formed after the transfer of the methyl group from SAM to the methylation substrate. Transformation of a conditional-lethal ΔmetK mutant of Escherichia coli with a genomic library of Chlamydia trachomatis L2 identified CTL843 as a putative SAM transporter based on its ability to allow the mutant to survive metK deficiency only in the presence of extracellular SAM. CTL843 belongs to the drug/metabolite superfamily of transporters and allowed E. coli to transport S-adenosyl-l-[methyl-14C]methionine with an apparent Km of 5.9 µM and a Vmax of 32 pmol min−1 mg−1. Moreover, CTL843 conferred a growth advantage to a Δpfs E. coli mutant that lost the ability to detoxify SAH, while competition and back-transport experiments further implied that SAH was an additional substrate for CTL843. We propose that CTL843 acts as a SAM/SAH transporter (SAMHT) serving a dual function by allowing Chlamydia to acquire SAM from the host cell and excrete the toxic by-product SAH. The demonstration of a functional SAMHT provides further insight into the reductive evolution associated with the obligate intracellular lifestyle of Chlamydia and identifies an excellent chemotherapeutic target. IMPORTANCE Obligate intracellular parasites like Chlamydia have followed a reductive evolutionary path that has made them almost totally dependent on their host cell for nutrients. In this work, we identify a unique transporter of a metabolite essential for all methylation reactions that potentially bypasses the need for two enzymatic reactions in Chlamydia. The transporter, CTL843, allows Chlamydia trachomatis L2 to steal S-adenosylmethionine (SAM) from the eukaryotic host cytosol and to likely remove the toxic S-adenosylhomocysteine (SAH) formed when SAM loses its methyl group, acting as a SAM/SAH transporter (SAMHT). In addition to reflecting the adaptation of Chlamydia to an obligate intracellular lifestyle, the specific and central roles of SAMHT in Chlamydia metabolism provide a target for the development of therapeutic agents for the treatment of chlamydial infections. Obligate intracellular parasites like Chlamydia have followed a reductive evolutionary path that has made them almost totally dependent on their host cell for nutrients. In this work, we identify a unique transporter of a metabolite essential for all methylation reactions that potentially bypasses the need for two enzymatic reactions in Chlamydia. The transporter, CTL843, allows Chlamydia trachomatis L2 to steal S-adenosylmethionine (SAM) from the eukaryotic host cytosol and to likely remove the toxic S-adenosylhomocysteine (SAH) formed when SAM loses its methyl group, acting as a SAM/SAH transporter (SAMHT). In addition to reflecting the adaptation of Chlamydia to an obligate intracellular lifestyle, the specific and central roles of SAMHT in Chlamydia metabolism provide a target for the development of therapeutic agents for the treatment of chlamydial infections.


BMC Evolutionary Biology | 2009

Independent inactivation of arginine decarboxylase genes by nonsense and missense mutations led to pseudogene formation in Chlamydia trachomatis serovar L2 and D strains

Teresa N. Giles; Derek J. Fisher; David E. Graham

BackgroundChlamydia have reduced genomes that reflect their obligately parasitic lifestyle. Despite their different tissue tropisms, chlamydial strains share a large number of common genes and have few recognized pseudogenes, indicating genomic stability. All of the Chlamydiaceae have homologs of the aaxABC gene cluster that encodes a functional arginine:agmatine exchange system in Chlamydia (Chlamydophila)pneumoniae. However, Chlamydia trachomatis serovar L2 strains have a nonsense mutation in their aaxB genes, and C. trachomatis serovar A and B strains have frameshift mutations in their aaxC homologs, suggesting that relaxed selection may have enabled the evolution of aax pseudogenes. Biochemical experiments were performed to determine whether the aaxABC genes from C. trachomatis strains were transcribed, and mutagenesis was used to identify nucleotide substitutions that prevent protein maturation and activity. Molecular evolution techniques were applied to determine the relaxation of selection and the scope of aax gene inactivation in the Chlamydiales.ResultsThe aaxABC genes were co-transcribed in C. trachomatis L2/434, during the mid-late stage of cellular infection. However, a stop codon in the aaxB gene from this strain prevented the heterologous production of an active pyruvoyl-dependent arginine decarboxylase. Replacing that ochre codon with its ancestral tryptophan codon rescued the activity of this self-cleaving enzyme. The aaxB gene from C. trachomatis D/UW-3 was heterologously expressed as a proenzyme that failed to cleave and form the catalytic pyruvoyl cofactor. This inactive protein could be rescued by replacing the arginine-115 codon with an ancestral glycine codon. The aaxC gene from the D/UW-3 strain encoded an active arginine:agmatine antiporter protein, while the L2/434 homolog was unexpectedly inactive. Yet the frequencies of nonsynonymous versus synonymous nucleotide substitutions show no signs of relaxed selection, consistent with the recent inactivation of these genes.ConclusionThe ancestor of the Chlamydiaceae had a functional arginine:agmatine exchange system that is decaying through independent, parallel processes in the C. trachomatis lineage. Differences in arginine metabolism among Chlamydiaceae species may be partly associated with their tissue tropism, possibly due to the protection conferred by a functional arginine-agmatine exchange system against host nitric oxide production and innate immunity. The independent loss of AaxB activity in all sequenced C. trachomatis strains indicates continual gene inactivation and illustrates the difficulty of recognizing recent bacterial pseudogenes from sequence comparison, transcriptional profiling or the analysis of nucleotide substitution rates.


Infection and Immunity | 2016

A Coming of Age Story: Chlamydia in the Post-Genetic Era

Anna J. Hooppaw; Derek J. Fisher

ABSTRACT Chlamydia spp. are ubiquitous, obligate, intracellular Gram-negative bacterial pathogens that undergo a unique biphasic developmental cycle transitioning between the infectious, extracellular elementary body and the replicative, intracellular reticulate body. The primary Chlamydia species associated with human disease are C. trachomatis, which is the leading cause of both reportable bacterial sexually transmitted infections and preventable blindness, and C. pneumoniae, which infects the respiratory tract and is associated with cardiovascular disease. Collectively, these pathogens are a significant source of morbidity and pose a substantial financial burden on the global economy. Past efforts to elucidate virulence mechanisms of these unique and important pathogens were largely hindered by an absence of genetic methods. Watershed studies in 2011 and 2012 demonstrated that forward and reverse genetic approaches were feasible with Chlamydia and that shuttle vectors could be selected and maintained within the bacterium. While these breakthroughs have led to a steady expansion of the chlamydial genetic tool kit, there are still roads left to be traveled. This minireview provides a synopsis of the currently available genetic methods for Chlamydia along with a comparison to the methods used in other obligate intracellular bacteria. Limitations and advantages of these techniques will be discussed with an eye toward the methods still needed, and how the current state of the art for genetics in obligate intracellular bacteria could direct future technological advances for Chlamydia.


Fems Microbiology Letters | 2012

Characterization of the activity and expression of arginine decarboxylase in human and animal Chlamydia pathogens

Kimberly A. Bliven; Derek J. Fisher; Anthony T. Maurelli

Chlamydia pneumoniae encodes a functional arginine decarboxylase (ArgDC), AaxB, that activates upon self-cleavage and converts l-arginine to agmatine. In contrast, most Chlamydia trachomatis serovars carry a missense or nonsense mutation in aaxB abrogating activity. The G115R missense mutation was not predicted to impact AaxB functionality, making it unclear whether AaxB variations in other Chlamydia species also result in enzyme inactivation. To address the impact of gene polymorphism on functionality, we investigated the activity and production of the Chlamydia AaxB variants. Because ArgDC plays a critical role in the Escherichia coli acid stress response, we studied the ability of these Chlamydia variants to complement an E. coli ArgDC mutant in an acid shock assay. Active AaxB was detected in four additional species: Chlamydia caviae, Chlamydia pecorum, Chlamydia psittaci, and Chlamydia muridarum. Of the C. trachomatis serovars, only E appears to encode active enzyme. To determine when functional enzyme is present during the chlamydial developmental cycle, we utilized an anti-AaxB antibody to detect both uncleaved and cleaved enzyme throughout infection. Uncleaved enzyme production peaked around 20 h postinfection, with optimal cleavage around 44 h. While the role ArgDC plays in Chlamydia survival or virulence is unclear, our data suggest a niche-specific function.


Microbiology | 2015

Phosphoproteomic analysis of the Chlamydia caviae elementary body and reticulate body forms.

Derek J. Fisher; Nancy E. Adams; Anthony T. Maurelli

Chlamydia are Gram-negative, obligate intracellular bacteria responsible for significant diseases in humans and economically important domestic animals. These pathogens undergo a unique biphasic developmental cycle transitioning between the environmentally stable elementary body (EB) and the replicative intracellular reticulate body (RB), a conversion that appears to require extensive regulation of protein synthesis and function. However, Chlamydia possess a limited number of canonical mechanisms of transcriptional regulation. Ser/Thr/Tyr phosphorylation of proteins in bacteria has been increasingly recognized as an important mechanism of post-translational control of protein function. We utilized 2D gel electrophoresis coupled with phosphoprotein staining and MALDI-TOF/TOF analysis to map the phosphoproteome of the EB and RB forms of Chlamydia caviae. Forty-two non-redundant phosphorylated proteins were identified (some proteins were present in multiple locations within the gels). Thirty-four phosphorylated proteins were identified in EBs, including proteins found in central metabolism and protein synthesis, Chlamydia-specific hypothetical proteins and virulence-related proteins. Eleven phosphorylated proteins were identified in RBs, mostly involved in protein synthesis and folding and a single virulence-related protein. Only three phosphoproteins were found in both EB and RB phosphoproteomes. Collectively, 41 of 42 C. caviae phosphoproteins were present across Chlamydia species, consistent with the existence of a conserved chlamydial phosphoproteome. The abundance of stage-specific phosphoproteins suggests that protein phosphorylation may play a role in regulating the function of developmental-stage-specific proteins and/or may function in concert with other factors in directing EB-RB transitions.


Methods of Molecular Biology | 2017

Use of Group II Intron Technology for Targeted Mutagenesis in Chlamydia trachomatis.

Charlotte E. Key; Derek J. Fisher

Dissecting the contribution of genes to virulence in fulfillment of Molecular Kochs postulates is essential for developing prevention and treatment strategies for bacterial pathogens. This chapter will discuss the application of a targeted, intron-based insertional mutagenesis method for creating mutants in the obligate, intracellular bacterial pathogen Chlamydia trachomatis. The methods employed for intron targeting, mutant selection, and mutant verification will be outlined including available selection markers, gene targeting strategies, and potential pitfalls.

Collaboration


Dive into the Derek J. Fisher's collaboration.

Top Co-Authors

Avatar

Anthony T. Maurelli

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Ja E. Claywell

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Reinaldo E. Fernández

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna J. Hooppaw

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Arosha Loku Umagiliyage

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Cayla M. Johnson

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Lea M. Matschke

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Nancy E. Adams

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Nicole M. Lowden

Southern Illinois University Carbondale

View shared research outputs
Top Co-Authors

Avatar

Ruplal Choudhary

Southern Illinois University Carbondale

View shared research outputs
Researchain Logo
Decentralizing Knowledge