Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek J. Parks is active.

Publication


Featured researches published by Derek J. Parks.


Molecular Cell | 1999

Molecular recognition of fatty acids by peroxisome proliferator-activated receptors.

H. Eric Xu; Millard H. Lambert; Valerie G. Montana; Derek J. Parks; Steven G. Blanchard; Peter J. Brown; Daniel D. Sternbach; Jürgen M. Lehmann; G. Bruce Wisely; Timothy M. Willson; Steven A. Kliewer; Michael V. Milburn

The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors for fatty acids (FAs) that regulate glucose and lipid homeostasis. We report the crystal structure of the PPAR delta ligand-binding domain (LBD) bound to either the FA eicosapentaenoic acid (EPA) or the synthetic fibrate GW2433. The carboxylic acids of EPA and GW2433 interact directly with the activation function 2 (AF-2) helix. The hydrophobic tail of EPA adopts two distinct conformations within the large hydrophobic cavity. GW2433 occupies essentially the same space as EPA bound in both conformations. These structures provide molecular insight into the propensity for PPARs to interact with a variety of synthetic and natural compounds, including FAs that vary in both chain length and degree of saturation.


Cell | 2002

Crystal Structure of the Glucocorticoid Receptor Ligand Binding Domain Reveals a Novel Mode of Receptor Dimerization and Coactivator Recognition

Randy K. Bledsoe; Valerie G. Montana; Thomas B. Stanley; Chris J. Delves; Christopher J. Apolito; David D. McKee; Thomas G. Consler; Derek J. Parks; Eugene L. Stewart; Timothy M. Willson; Millard H. Lambert; John T. Moore; Kenneth H. Pearce; H. Eric Xu

Transcriptional regulation by the glucocorticoid receptor (GR) is mediated by hormone binding, receptor dimerization, and coactivator recruitment. Here, we report the crystal structure of the human GR ligand binding domain (LBD) bound to dexamethasone and a coactivator motif derived from the transcriptional intermediary factor 2. Despite structural similarity to other steroid receptors, the GR LBD adopts a surprising dimer configuration involving formation of an intermolecular beta sheet. Functional studies demonstrate that the novel dimer interface is important for GR-mediated activation. The structure also reveals an additional charge clamp that determines the binding selectivity of a coactivator and a distinct ligand binding pocket that explains its selectivity for endogenous steroid hormones. These results establish a framework for understanding the roles of protein-hormone and protein-protein interactions in GR signaling pathways.


Nature | 2002

Structural basis for antagonist-mediated recruitment of nuclear co-repressors by PPARα

H. Eric Xu; Thomas B. Stanley; Valerie G. Montana; Millard H. Lambert; Barry George Shearer; Jeffery E. Cobb; David D. McKee; Cristin M. Galardi; Kelli D. Plunket; Robert T. Nolte; Derek J. Parks; John T. Moore; Steven A. Kliewer; Timothy M. Willson; Julie B. Stimmel

Repression of gene transcription by nuclear receptors is mediated by interactions with co-repressor proteins such as SMRT and N-CoR, which in turn recruit histone deacetylases to the chromatin. Aberrant interactions between nuclear receptors and co-repressors contribute towards acute promyelocytic leukaemia and thyroid hormone resistance syndrome. The binding of co-repressors to nuclear receptors occurs in the unliganded state, and can be stabilized by antagonists. Here we report the crystal structure of a ternary complex containing the peroxisome proliferator-activated receptor-α ligand-binding domain bound to the antagonist GW6471 and a SMRT co-repressor motif. In this structure, the co-repressor motif adopts a three-turn α-helix that prevents the carboxy-terminal activation helix (AF-2) of the receptor from assuming the active conformation. Binding of the co-repressor motif is further reinforced by the antagonist, which blocks the AF-2 helix from adopting the active position. Biochemical analyses and structure-based mutagenesis indicate that this mode of co-repressor binding is highly conserved across nuclear receptors.


Science | 2007

Rev-erbα, a Heme Sensor That Coordinates Metabolic and Circadian Pathways

Lei Yin; Nan Wu; Joshua C. Curtin; Mohammed Qatanani; Nava Szwergold; Robert Reid; Gregory Waitt; Derek J. Parks; Kenneth H. Pearce; G. Bruce Wisely; Mitchell A. Lazar

The circadian clock temporally coordinates metabolic homeostasis in mammals. Central to this is heme, an iron-containing porphyrin that serves as prosthetic group for enzymes involved in oxidative metabolism as well as transcription factors that regulate circadian rhythmicity. The circadian factor that integrates this dual function of heme is not known. We show that heme binds reversibly to the orphan nuclear receptor Rev-erbα, a critical negative component of the circadian core clock, and regulates its interaction with a nuclear receptor corepressor complex. Furthermore, heme suppresses hepatic gluconeogenic gene expression and glucose output through Rev-erbα–mediated gene repression. Thus, Rev-erbα serves as a heme sensor that coordinates the cellular clock, glucose homeostasis, and energy metabolism.


Chemistry & Biology | 1997

Identification of peroxisome proliferator-activated receptor ligands from a biased chemical library

Peter J. Brown; Tracey Smith-Oliver; Paul S. Charifson; Nicholas C. O. Tomkinson; Adam M. Fivush; Daniel D. Sternbach; Laura Wade; Lisa A. Orband-Miller; Derek J. Parks; Steven G. Blanchard; Steven A. Kliewer; Jürgen M. Lehmann; Timothy M. Willson

BACKGROUND The peroxisome proliferator-activated receptors (PPARs) were cloned as orphan members of the nuclear receptor superfamily of transcription factors. The identification of subtype-selective ligands for PPARalpha and PPARgamma has led to the discovery of their roles in the regulation of lipid metabolism and glucose homeostasis. No subtype-selective PPARdelta ligands are available and the function of this subtype is currently unknown. RESULTS A three-component library was designed in which one of the monomers was biased towards the PPARs and the other two monomers were chosen to add chemical diversity. Synthesis and screening of the library resulted in the identification of pools with activity on each of the PPAR subtypes. Deconvolution of the pools with the highest activity on PPARdelta led to the identification of GW 2433 as the first high-affinity PPARdelta ligand. [3H]GW 2433 is an effective radioligand for use in PPARdelta competition-binding assays. CONCLUSIONS The synthesis of biased chemical libraries is an efficient approach to the identification of lead molecules for members of sequence-related receptor families. This approach is well suited to the discovery of small-molecule ligands for orphan receptors.


Journal of Cell Science | 2008

Ligand modulation of REV-ERBα function resets the peripheral circadian clock in a phasic manner

Qing Jun Meng; Andrew McMaster; Stephen Beesley; Wei Qun Lu; Julie Gibbs; Derek J. Parks; Jon L. Collins; Stuart N. Farrow; Rachelle Donn; David Ray; Andrew Loudon

The nuclear receptor REV-ERBα is a key negative-feedback regulator of the biological clock. REV-ERBα binds to ROR elements of the Bmal1 (Arntl) promoter and represses Bmal1 transcription. This stabilizing negative loop is important for precise control of the circadian pacemaker. In the present study, we identified a novel synthetic REV-ERBα ligand, which enhances the recruitment of nuclear receptor co-repressor (NCoR) to REV-ERBα. In order to explore REV-ERBα action on resetting responses of the molecular clock, we first established the rhythmic transcription profile and expression level of REV-ERBα in Rat-1 fibroblasts. When applied at different phases of the circadian oscillation to cell models containing stably transfected Bmal1::Luc or Per2::Luc, the REV-ERBα ligand induced phase-dependent bi-directional phase shifts. When the phase changes were plotted against time, a clear phase response curve was revealed, with a significant peak-to-trough amplitude of ca. 5 hours. The phase-resetting effect was also observed when the compound was applied to primary lung fibroblasts and ectopic lung slices from transgenic PER2::Luc mice. Therefore, similar regulation of REV-ERBα function by endogenous ligands, such as heme, is likely to be an important mechanism for clock resetting. In addition, we identify a new means to generate phasic shifts in the clock.


Bioorganic & Medicinal Chemistry Letters | 2008

Conformationally constrained farnesoid X receptor (FXR) agonists: Naphthoic acid-based analogs of GW 4064.

Adwoa Akwabi-Ameyaw; Jonathan Y. Bass; Richard D. Caldwell; Justin A. Caravella; Lihong Chen; Katrina L. Creech; David N. Deaton; Stacey A. Jones; Istvan Kaldor; Yaping Liu; Kevin P. Madauss; Harry B. Marr; Robert B. McFadyen; Aaron B. Miller; Frank Navas; Derek J. Parks; Paul K. Spearing; Dan Todd; Shawn P. Williams; G. Bruce Wisely

Starting from the known FXR agonist GW 4064 1a, a series of stilbene replacements were prepared. The 6-substituted 1-naphthoic acid 1b was an equipotent FXR agonist with improved developability parameters relative to 1a. Analog 1b also reduced the severity of cholestasis in the ANIT acute cholestatic rat model.


ACS Chemical Biology | 2010

GSK4112, a Small Molecule Chemical Probe for the Cell Biology of the Nuclear Heme Receptor Rev-erbα

Daniel Grant; Lei Yin; Jon L. Collins; Derek J. Parks; Lisa A. Orband-Miller; G. Bruce Wisely; Shree Joshi; Mitchell A. Lazar; Timothy M. Willson; William J. Zuercher

The identification of nonporphyrin ligands for the orphan nuclear receptor Rev-erbα will enable studies of its role as a heme sensor and regulator of metabolic and circadian signaling. We describe the development of a biochemical assay measuring the interaction between Rev-erbα and a peptide from the nuclear receptor corepressor-1 (NCoR). The assay was utilized to identify a small molecule ligand for Rev-erbα, GSK4112 (1), that was competitive with heme. In cells, 1 profiled as a Rev-erbα agonist in cells to inhibit expression of the circadian target gene bmal1. In addition, 1 repressed the expression of gluconeogenic genes in liver cells and reduced glucose output in primary hepatocytes. Therefore, 1 is useful as a chemical tool to probe the function of Rev-erbα in transcriptional repression, regulation of circadian biology, and metabolic pathways. Additionally, 1 may serve as a starting point for design of Rev-erbα chemical probes with in vivo pharmacological activity.


Cytometry | 2001

Multiplexed molecular interactions of nuclear receptors using fluorescent microspheres.

Marie A. Iannone; Thomas G. Consler; Kenneth H. Pearce; Julie B. Stimmel; Derek J. Parks; John G. Gray

BACKGROUND We describe a novel microsphere-based system to identify and characterize multiplexed interactions of nuclear receptors with peptides that represent the LXXLL binding region of coactivator proteins. METHODS In this system, individual microsphere populations with unique red and orange fluorescent profiles are coupled to specific coactivator peptides. The coactivator peptide-coupled microsphere populations are combined and incubated with a nuclear receptor that has been coupled to a green fluorochrome. Flow cytometric analysis of the microspheres simultaneously decodes each population and detects the binding of receptor to respective coactivator peptides by the acquisition of green fluorescence. RESULTS We have used this system to determine the binding affinities of human estrogen receptor beta ligand binding domain (ERbeta LBD) and human peroxisome proliferator activated receptor gamma ligand binding domain (PPARgamma LBD) to a set of 34 coactivator peptides. Binding of ERbeta LBD to a coactivator peptide sequence containing the second LXXLL motif of steroid receptor coactivator-1 (SRC-1(2) (676-700) is shown to be specific and saturable. Analysis of receptor binding to a multiplexed set of coactivator peptides shows PPARgamma LBD binds with high affinity to cAMP response element binding protein (CBP) peptides and to the related P300 peptide while ERbeta LBD exibits little binding to these peptides. Using the microsphere-based assay we demonstrate that ERbeta LBD and PPARgamma LBD binding affinities for the coactivator peptides are increased in the presence of agonist (estradiol or GW1929, respectively) and that ERbeta LBD binding is decreased in the presence of antagonist (raloxifene or tamoxifen). CONCLUSIONS This unique microsphere-based system is a sensitive and efficient method to simultaneously evaluate many receptor-coactivator interactions in a single assay volume. In addition, the system offers a powerful approach to study small molecule modulation of nuclear receptor binding.


Bioorganic & Medicinal Chemistry Letters | 2009

FXR agonist activity of conformationally constrained analogs of GW 4064.

Adwoa Akwabi-Ameyaw; Jonathan Y. Bass; Richard D. Caldwell; Justin A. Caravella; Lihong Chen; Katrina L. Creech; David N. Deaton; Kevin P. Madauss; Harry B. Marr; Robert B. McFadyen; Aaron B. Miller; Frank Navas; Derek J. Parks; Paul K. Spearing; Dan Todd; Shawn P. Williams; G. Bruce Wisely

Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

Collaboration


Dive into the Derek J. Parks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven A. Kliewer

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge