Derek K. Gray
University of Windsor
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Derek K. Gray.
Geophysical Research Letters | 2015
Catherine M. O'Reilly; Sapna Sharma; Derek K. Gray; Stephanie E. Hampton; Jordan S. Read; Rex J. Rowley; Philipp Schneider; John D. Lenters; Peter B. McIntyre; Benjamin M. Kraemer; Gesa A. Weyhenmeyer; Dietmar Straile; Bo Dong; Rita Adrian; Mathew G. Allan; Orlane Anneville; Lauri Arvola; Jay A. Austin; John L. Bailey; Jill S. Baron; Justin D. Brookes; Elvira de Eyto; Martin T. Dokulil; David P. Hamilton; Karl E. Havens; Amy L. Hetherington; Scott N. Higgins; Simon J. Hook; Lyubov R. Izmest'eva; Klaus D. Joehnk
In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes.
Molecular Ecology | 2008
Jim R. Muirhead; Derek K. Gray; David W. Kelly; Sandra Ellis; Daniel D. Heath; Hugh J. MacIsaac
Population geneticists and community ecologists have long recognized the importance of sampling design for uncovering patterns of diversity within and among populations and in communities. Invasion ecologists increasingly have utilized phylogeographical patterns of mitochondrial or chloroplast DNA sequence variation to link introduced populations with putative source populations. However, many studies have ignored lessons from population genetics and community ecology and are vulnerable to sampling errors owing to insufficient field collections. A review of published invasion studies that utilized mitochondrial or chloroplast DNA markers reveals that insufficient sampling could strongly influence results and interpretations. Sixty per cent of studies sampled an average of less than six individuals per source population, vs. only 45% for introduced populations. Typically, far fewer introduced than source populations were surveyed, although they were sampled more intensively. Simulations based on published data forming a comprehensive mtDNA haplotype data set highlight and quantify the impact of the number of individuals surveyed per source population and number of putative source populations surveyed for accurate assignment of introduced individuals. Errors associated with sampling a low number of individuals are most acute when rare source haplotypes are dominant or fixed in the introduced population. Accuracy of assignment of introduced individuals is also directly related to the number of source populations surveyed and to the degree of genetic differentiation among them (FST). Incorrect interpretations resulting from sampling errors can be avoided if sampling design is considered before field collections are made.
Hydrobiologia | 2003
Igor A. Grigorovich; Alexei V. Korniushin; Derek K. Gray; Ian C. Duggan; Robert I. Colautti; Hugh J. MacIsaac
Lake Superior receives a disproportionate number of ballast water discharges from transoceanic ships operating on the Laurentian Great Lakes. Although this provides dispersal opportunities for nonindigenous species (NIS), relatively few NIS were initially discovered in this lake prior to being recorded elsewhere in the basin. A lack of NIS records from this lake may be an artefact of sampling bias. We tested this hypothesis by sampling benthos and plankton from littoral and deepwater habitats around the perimeter of Lake Superior during June and August 2001. Using morphological analysis techniques, we identified a total of 230 invertebrate taxa representing planktonic, benthic and nektonic lifestyles. Five species with invasion histories in the lower Great Lakes, the bivalves Sphaerium corneum, Pisidium amnicum and P. moitessierianum, gastropod Potamopyrgus antipodarum and amphipod Echinogammarus ischnus, were identified for the first time in Lake Superior. In addition, records of expanded distributions within this lake are presented for the amphipod Gammarus fasciatus and oligochaetes Ripistes parasita and Vejdovskyella intermedia. Recently introduced NIS in Lake Superior were found near international ports, implicating shipping as the vector of their introduction. Intrinsic physical-chemical aspects of Lake Superior may account for the scarcity of NIS in this lake as compared to the lower Great Lakes.
Scientific Data | 2015
Sapna Sharma; Derek K. Gray; Jordan S. Read; Catherine M. O’Reilly; Philipp Schneider; Anam Qudrat; Corinna Gries; Samantha Stefanoff; Stephanie E. Hampton; Simon J. Hook; John D. Lenters; David M. Livingstone; Peter B. McIntyre; Rita Adrian; Mathew G. Allan; Orlane Anneville; Lauri Arvola; Jay A. Austin; John L. Bailey; Jill S. Baron; Justin D. Brookes; Yuwei Chen; Robert Daly; Martin T. Dokulil; Bo Dong; Kye Ewing; Elvira de Eyto; David P. Hamilton; Karl E. Havens; Shane Haydon
Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.
Environmental Reviews | 2009
Derek K. Gray; Shelley E. Arnott
Anthropogenic acidification has affected biota in thousands of lakes in eastern North America and Europe. To measure the degree and extent of biological recovery following pH recovery in acidified lakes, many studies have assessed changes occurring in acid-damaged zooplankton communities. In this review we synthesize studies of zooplankton recovery from regions severely affected by acidification. In doing so, we provide a critical overview of: (1) the design of studies used to detect recovery; (2) the status of communities in acidified regions; and (3) our current understanding of the factors that limit recovery. The design of most studies assessing zooplankton recovery fall into three categories based on their selection of data to be used for recovery benchmarks: (1) historical; (2) reference-lakes; and (3) temporal. Within these study designs, the most commonly used metrics include species richness, indicator species, and relative species abundances. Many studies have used species richness as the sole i...
Ecological Applications | 2011
Derek K. Gray; Shelley E. Arnott
The acidification and ongoing pH recovery of lakes in Killarney Provincial Park, Canada, provide a unique opportunity to increase our understanding of the role of dispersal as communities respond to environmental change. Time lags in community recovery following pH increases in acidified lakes have typically been attributed to local factors; however, no studies have been conducted to determine if colonist availability could also play a role. Moreover, the rates and mechanisms of dispersal to recovering lakes are poorly understood. In this study, we sought to determine if dispersal limitation could impede the recovery of zooplankton communities affected by a regional stressor. To achieve this objective, we used a combination of empirical data collection along with spatial modeling and variation partitioning techniques. Data were collected by measuring dispersal to four recovering lakes in Killarney Park. Dispersal traps were placed next to lakes to measure immigration overland, drift nets were used to measure immigration via streams, and in situ emergence traps were used to quantify immigration from historically deposited resting eggs. Documented dispersal levels were then compared with the theoretical critical density required for reproduction (N(c)) to determine if adequate numbers were dispersing to establish populations of acid-sensitive species in recovering lakes. Spatial modeling and variation partitioning were conducted using community and physical/chemical data for 45 park lakes that were collected in 1972-1973, 1990, and 2005. Field data demonstrated that a variety of zooplankton species were dispersing to recovering lakes through streams and the egg bank, but few individuals were collected dispersing overland. Although we identified 24 species of zooplankton dispersing, only six species absent from the communities of our study lakes were identified from our traps, and two of these species did not disperse in high enough numbers to surpass N(c). Local environmental variables explained the largest proportion of the variation in zooplankton communities (18-37%); however, spatial variables were also important (7-18%). The significant spatial patterns we found in the parks zooplankton communities, combined with the low overland dispersal levels we documented, suggest that dispersal limitation may be a more important impediment to recovery than was previously thought.
Biological Invasions | 2005
Derek K. Gray; Sarah A. Bailey; Ian C. Duggan; Hugh J. MacIsaac
International shipping has been the dominant vector of nonindigenous species introductions to the Laurentian Great Lakes over the past century. Apparent ballast-mediated invasions have been recorded in recent years, despite the implementation of voluntary ballast water exchange regulations in 1989. Since unregulated ‘no-ballast-on-board’ vessels currently dominate inbound traffic to the Great Lakes, it has been proposed that live or dormant organisms contained in residual ballast of these vessels may be partially responsible for recent invasions. Alternatively, euryhaline species may pose a significant invasion threat because they can potentially survive ballast exchange. In this study, we explored whether exposure to open-ocean water (32‰) reduced the viability of invertebrate diapausing eggs in ballast sediments. Sediments collected from three transoceanic ships and from three freshwater habitats were exposed to open-ocean seawater. Egg viability, assessed as the abundance of taxa hatched between exposed and unexposed sediments, was not affected by saltwater exposure in any experiment. Species richness of hatched diapausing eggs was reduced by saltwater exposure in only one of seven trials. Our results indicate that oligostenohaline zooplankton may pose an invasion risk because their diapausing eggs are largely resistant to exposure to open-ocean saltwater.
PLOS ONE | 2014
Stephanie E. Hampton; Derek K. Gray; Lyubov R. Izmest'eva; Marianne V. Moore; Tedy Ozersky
Both surface water temperatures and the intensity of thermal stratification have increased recently in large lakes throughout the world. Such physical changes can be accompanied by shifts in plankton community structure, including changes in relative abundances and depth distributions. Here we analyzed 45 years of data from Lake Baikal, the worlds oldest, deepest, and most voluminous lake, to assess long-term trends in the depth distribution of pelagic phytoplankton and zooplankton. Surface water temperatures in Lake Baikal increased steadily between 1955 and 2000, resulting in a stronger thermal gradient within the top 50 m of the water column. In conjunction with these physical changes our analyses reveal significant shifts in the daytime depth distribution of important phytoplankton and zooplankton groups. The relatively heavy diatoms, which often rely on mixing to remain suspended in the photic zone, shifted downward in the water column by 1.90 m y-1, while the depths of other phytoplankton groups did not change significantly. Over the same time span the density-weighted average depth of most major zooplankton groups, including cladocerans, rotifers, and immature copepods, exhibited rapid shifts toward shallower positions (0.57–0.75 m y−1). As a result of these depth changes the vertical overlap between herbivorous copepods (Epischura baikalensis) and their algal food appears to have increased through time while that for cladocerans decreased. We hypothesize that warming surface waters and reduced mixing caused these ecological changes. Future studies should examine how changes in the vertical distribution of plankton might impact energy flow in this lake and others.
Canadian Journal of Fisheries and Aquatic Sciences | 2010
Derek K. Gray; Hugh J. MacIsaac
To reduce the transfer of nonindigenous species, regulations require transoceanic ships to exchange ballast with ocean water before discharging into the Great Lakes. Although ballast water exchange...
Ecological Applications | 2011
Derek K. Gray; Shelley E. Arnott
Many important ecological phenomena depend on the success or failure of small introduced populations. Several factors are thought to influence the fate of small populations, including resource and habitat availability, dispersal levels, interspecific interactions, mate limitation, and demographic stochasticity. Recent field studies suggest that Allee effects resulting from mate limitation can prevent the reestablishment of sexual zooplankton species following a disturbance. In this study, we explore the interplay between Allee effects and local environmental conditions in determining the population growth and establishment of two acid-sensitive zooplankton species that have been impacted by regional anthropogenic acidification. We conducted a factorial design field experiment to test the impact of pH and initial organism densities on the per capita population growth (r) of the sexual copepod Epischura lacustris and the seasonally parthenogenetic cladoceran Daphnia mendotae. In addition, we conducted computer simulations using r values obtained from our experiments to determine the probability of extinction for small populations of acid-sensitive colonists that are in the process of colonizing recovering lakes. The results of our field experiment demonstrated that local environmental conditions can moderate the impacts of Allee effects for E. lacustris: Populations introduced at low densities had a significantly lower r at pH 6 than at pH 7. In contrast, r did not differ between pH 6 and 7 environments when E. lacustris populations were introduced at high densities. D. mendotae was affected by pH levels, but not by initial organism densities. Results from our population growth simulations indicated that E. lacustris populations introduced at low densities to pH 6 conditions had a higher probability of extinction than those introduced at low densities to a pH 7 environment. Our study indicates that environmental conditions and mate limitation can interact to determine the fate of small populations of sexually reproducing zooplankton species. If a more rapid recovery of acid-damaged zooplankton communities is desired, augmentation of dispersal levels may be needed during the early phases of pH recovery in order to increase the probability of establishment for mate-limited zooplankton species.