Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek Lacey is active.

Publication


Featured researches published by Derek Lacey.


Journal of Immunology | 2012

Defining GM-CSF– and Macrophage-CSF–Dependent Macrophage Responses by In Vitro Models

Derek Lacey; Adrian Achuthan; Andrew J. Fleetwood; Hang Dinh; John Roiniotis; Glen M. Scholz; Melody W. Chang; Sandra K. Beckman; Andrew D. Cook; John A. Hamilton

GM-CSF and M-CSF (CSF-1) induce different phenotypic changes in macrophage lineage populations. The nature, extent, and generality of these differences were assessed by comparing the responses to these CSFs, either alone or in combination, in various human and murine macrophage lineage populations. The differences between the respective global gene expression profiles of macrophages, derived from human monocytes by GM-CSF or M-CSF, were compared with the differences between the respective profiles for macrophages, derived from murine bone marrow cells by each CSF. Only 17% of genes regulated differently by these CSFs were common across the species. Whether a particular change in relative gene expression is by direct action of a CSF can be confounded by endogenous mediators, such as type I IFN, IL-10, and activin A. Time-dependent differences in cytokine gene expression were noted in human monocytes treated with the CSFs; in this system, GM-CSF induced a more dramatic expression of IFN-regulated factor 4 (IRF4) than of IRF5, whereas M-CSF induced IRF5 but not IRF4. In the presence of both CSFs, some evidence of “competition” at the level of gene expression was observed. Care needs to be exercised when drawing definitive conclusions from a particular in vitro system about the roles of GM-CSF and M-CSF in macrophage lineage biology.


Osteoarthritis and Cartilage | 2009

Proinflammatory cytokines inhibit osteogenic differentiation from stem cells: implications for bone repair during inflammation

Derek Lacey; P.J. Simmons; Stephen Graves; John A. Hamilton

OBJECTIVE The effects of inflammation on bone development from mesenchymal stem cells (MSC) are unclear due to the difficulty in isolating MSC. The aim of this study was to develop a MSC isolation method and to determine the in vitro effects of interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNFalpha) on their osteogenic differentiation. METHODS Murine MSC were isolated from the limbs of C57/Bl6 mice through collagenase digestion of bone and enriched as the Stem cell antigen (Sca-1)(+) CD31(-) CD45(-) population, using lineage immunodepletion, followed by fluorescence-activated cell sorting (FACS). They were differentiated along the osteoblast linage in the presence or absence of IL-1beta and TNFalpha. Mineralization was measured as was the expression of a number of osteogenic genes by quantitative polymerase chain reaction (PCR). RESULTS We show that osteogenic differentiation from the MSC population is suppressed by IL-1beta and TNFalpha. In addition to suppression of bone mineralization, both cytokines inhibited the differentiation-associated increases in alkaline phosphatase (ALP) activity and the gene expression for ALP, alpha1(I) procollagen, runt-related transcription factor 2 (Runx2) and osterix. However, only TNFalpha inhibited osteonectin and osteopontin mRNA expression and only IL-1beta reduced cell proliferation. CONCLUSIONS The convenient isolation technique enables the easy generation of sufficient MSC to permit the molecular analysis of their differentiation. We were thus able to show that the proinflammatory cytokines, IL-1beta and TNFalpha, can compromise bone development from this primary MSC population, although with some significant differences. The potential involvement of specific inflammatory mediators needs to be taken into account if optimal bone repair and presumably that of other tissues are to be achieved with MSC.


PLOS ONE | 2012

Human amniotic epithelial cell transplantation induces markers of alternative macrophage activation and reduces established hepatic fibrosis.

Ursula Manuelpillai; Dinushka Lourensz; Vijesh Vaghjiani; Jorge Tchongue; Derek Lacey; Jing Yang Tee; Padma Murthi; James Chan; Alexander Hodge; William Sievert

Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis. Immunocompetent C57BL/6 mice were administered carbon tetrachloride (CCl4) twice weekly resulting in bridging fibrosis by 12 weeks. hAEC (2×106) were infused via the tail vein at week 8 or weeks 8 and 10 (single and double dose, respectively). Human cells were detected in mouse liver four weeks after transplantation showing hAEC engraftment. CCl4 treated mice receiving single or double hAEC doses showed a significant but similar decrease in liver fibrosis area associated with decreased activation of collagen-producing hepatic stellate cells and decreased hepatic protein levels of the pro-fibrogenic cytokine, transforming growth factor-beta1. CCl4 administration caused hepatic T cell infiltration that decreased significantly following hAEC transplantation. Hepatic macrophages play a crucial role in both fibrogenesis and fibrosis resolution. Mice exposed to CCl4 demonstrated increased numbers of hepatic macrophages compared to normal mice; the number of macrophages decreased significantly in CCl4 treated mice given hAEC. These mice had significantly lower hepatic protein levels of the chemokine monocyte chemoattractant protein-1 than mice given CCl4 alone. Alternatively activated M2 macrophages are associated with fibrosis resolution. CCl4 treated mice given hAEC showed increased expression of genes associated with M2 macrophages including YM-1, IL-10 and CD206. We provide novel data showing that hAEC transplantation induces a wound healing M2 macrophage phenotype associated with reduction of established hepatic fibrosis that justifies further investigation of this potential cell-based therapy for advanced hepatic fibrosis.


Annals of the Rheumatic Diseases | 2013

Granulocyte-macrophage colony-stimulating factor is a key mediator in inflammatory and arthritic pain

Andrew D. Cook; Jarrad Pobjoy; Shannon Sarros; Stefan Steidl; Manuela Dürr; Derek Lacey; John A. Hamilton

Objectives Better therapies are needed for inflammatory pain. In arthritis the relationship between joint pain, inflammation and damage is unclear. Granulocyte-macrophage colony-stimulating factor (GM–CSF) is important for the progression of a number of inflammatory/autoimmune conditions including arthritis; clinical trials targeting its action in rheumatoid arthritis are underway. However, its contribution to inflammatory and arthritic pain is unknown. The aims of this study were to determine whether GM–CSF controls inflammatory and/or arthritic pain. Methods A model of inflammatory pain (complete Freunds adjuvant footpad), as well as two inflammatory arthritis models, were induced in GM–CSF−/− mice and development of pain (assessment of weight distribution) and arthritic disease (histology) was assessed. Pain was further assessed in a GM–CSF-driven arthritis (methylated bovine serum albumin/GM–CSF) model and the cyclooxygenase-dependence determined using indomethacin. Results GM–CSF was absolutely required for pain development in both the inflammatory pain and arthritis models, including for IL-1-dependent arthritic pain. Pain in a GM–CSF-driven arthritis model, but not the disease itself, was abolished by the cyclooxygenase inhibitor, indomethacin, indicating separate pathways downstream of GM–CSF for pain and arthritis control. Conclusions GM–CSF is key to the development of inflammatory and arthritic pain, suggesting that pain alleviation could result from trials evaluating its role in inflammatory/autoimmune conditions.


Arthritis Research & Therapy | 2012

Granulocyte-macrophage colony-stimulating factor is a key mediator in experimental osteoarthritis pain and disease development

Andrew D. Cook; Jarrad Pobjoy; Stefan Steidl; Manuela Dürr; Emma L. Braine; Amanda Turner; Derek Lacey; John A. Hamilton

IntroductionGranulocyte-macrophage colony-stimulating factor (GM-CSF) has been shown to be important in the development of inflammatory models of rheumatoid arthritis and there is encouraging data that its blockade may have clinical relevance in patients with rheumatoid arthritis. The aims of the current study were to determine whether GM-CSF may also be important for disease and pain development in a model of osteoarthritis.MethodsThe role of GM-CSF was investigated using the collagenase-induced instability model of osteoarthritis. We studied both GM-CSF-/- mice and wild-type (C57BL/6) mice treated prophylactically or therapeutically with a monoclonal antibody to GM-CSF. Disease development (both early and late) was evaluated by histology and knee pain development was measured by assessment of weight distribution.ResultsIn the absence of GM-CSF, there was less synovitis and matrix metalloproteinase-mediated neoepitope expression at week 2 post disease induction, and less cartilage damage at week 6. GM-CSF was absolutely required for pain development. Therapeutic neutralization of GM-CSF not only abolished the pain within 3 days but also led to significantly reduced cartilage damage.ConclusionsGM-CSF is key to the development of experimental osteoarthritis and its associated pain. Importantly, GM-CSF neutralization by a therapeutic monoclonal antibody-based protocol rapidly and completely abolished existing arthritic pain and suppressed the degree of arthritis development. Our results suggest that it would be worth exploring the importance of GM-CSF for pain and disease in other osteoarthritis models and perhaps clinically for this form of arthritis.


Journal of Immunology | 2015

Specific contributions of CSF-1 and GM-CSF to the dynamics of the mononuclear phagocyte system

Cynthia Louis; Andrew D. Cook; Derek Lacey; Andrew J. Fleetwood; Ross Vlahos; Gary P. Anderson; John A. Hamilton

M-CSF (or CSF-1) and GM-CSF can regulate the development and function of the mononuclear phagocyte system (MPS). To address some of the outstanding and sometimes conflicting issues surrounding this biology, we undertook a comparative analysis of the effects of neutralizing mAbs to these CSFs on murine MPS populations in the steady-state and during acute inflammatory reactions. CSF-1 neutralization, but not of GM-CSF, in normal mice rapidly reduced the numbers of more mature Ly6C− monocytes in blood and bone marrow, without any effect on proliferating precursors, and also the numbers of the resident peritoneal macrophages, observations consistent with CSF-1 signaling being essential only at a relatively late state in steady-state MPS development; in contrast, GM-CSF neutralization had no effect on the numbers of these particular populations. In Ag-induced peritonitis (AIP), thioglycolate-induced peritonitis, and LPS-induced lung inflammation, CSF-1 neutralization lowered inflammatory macrophage number; in the AIP model, this reduced number was not due to suppressed proliferation. More detailed studies with the convenient AIP model indicated that CSF-1 neutralization led to a relatively uniform reduction in all inflammatory cell populations; GM-CSF neutralization, in contrast, was more selective, resulting in the preferential loss among the MPS populations of a cycling, monocyte-derived inflammatory dendritic cell population. Some mechanistic options for the specific CSF-dependent biologies enumerated are discussed.


Journal of Clinical Investigation | 2016

Granulocyte macrophage colony-stimulating factor induces CCL17 production via IRF4 to mediate inflammation

Adrian Achuthan; Andrew D. Cook; Ming Chin Lee; Reem Saleh; Hsu Wei Khiew; Melody W.N. Chang; Cynthia Louis; Andrew J. Fleetwood; Derek Lacey; Anne D. Christensen; Ashlee T. Frye; Pui Yeng Lam; Hitoshi Kusano; Koji Nomura; Nancy Steiner; Irmgard Förster; Stephen L. Nutt; Moshe Olshansky; Stephen J. Turner; John A. Hamilton

Data from preclinical and clinical studies have demonstrated that granulocyte macrophage colony-stimulating factor (GM-CSF) can function as a key proinflammatory cytokine. However, therapies that directly target GM-CSF function could lead to undesirable side effects, creating a need to delineate downstream pathways and mediators. In this work, we provide evidence that GM-CSF drives CCL17 production by acting through an IFN regulatory factor 4-dependent (IRF4-dependent) pathway in human monocytes, murine macrophages, and mice in vivo. In murine models of arthritis and pain, IRF4 regulated the formation of CCL17, which mediated the proinflammatory and algesic actions of GM-CSF. Mechanistically, GM-CSF upregulated IRF4 expression by enhancing JMJD3 demethylase activity. We also determined that CCL17 has chemokine-independent functions in inflammatory arthritis and pain. These findings indicate that GM-CSF can mediate inflammation and pain by regulating IRF4-induced CCL17 production, providing insights into a pathway with potential therapeutic avenues for the treatment of inflammatory diseases and their associated pain.


Immunology and Cell Biology | 2011

Extracellular proteomes of M-CSF (CSF-1) and GM-CSF-dependent macrophages

Mark J. Bailey; Derek Lacey; Bernard de Kok; Paul D. Veith; Eric C. Reynolds; John A. Hamilton

Macrophage colony‐stimulating factor (M‐CSF) (also known as CSF‐1) and granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) have distinct effects on macrophage lineage populations, which are likely to be contributing to their functional heterogeneity. A comparative proteomic analysis of proteins released into culture media from such populations after M‐CSF and GM‐CSF exposure was carried out. Adherent macrophage populations, termed bone marrow‐derived macrophage (BMM) and GM‐BMM, were generated after treatment of murine bone marrow precursors with M‐CSF and GM‐CSF, respectively. Proteins in 16‐h serum‐free conditioned media (CM) were identified by two‐dimensional gel electrophoresis and mass spectrometry. Respective protein profiles from BMM and GM‐BMM CM were distinct and there was the suggestion of a switch from primarily signal peptide‐driven secretion to non‐classical secretion pathways from BMM to GM‐BMM. Extracellular expression of cathepsins (lysosomal proteases) and their inhibitors seems to be a characteristic difference between these macrophage cell types with higher levels usually observed in BMM‐CM. Furthermore, we have identified a number of proteins in BMM‐CM and GM‐BMM‐CM that could be involved in various tissue regeneration and inflammatory (immune) processes, respectively. The uncharacterized protein C19orf10, a protein found at high levels in the synovial fluid of arthritis patients, was also differentially regulated; its extracellular levels were upregulated in the presence of GM‐CSF.


PLOS ONE | 2012

Hypoxia Enhances the Proliferative Response of Macrophages to CSF-1 and Their Pro-Survival Response to TNF

John A. Hamilton; Derek Lacey; Amanda Turner; Bernard de Kok; Jennifer Huynh; Glen M. Scholz

In chronic inflammatory lesions there are increased numbers of macrophages with a possible contribution of enhanced survival/proliferation due, for example, to cytokine action; such lesions are often hypoxic. Prior studies have found that culture in low oxygen can promote monocyte/macrophage survival. We show here, using pharmacologic inhibitors, that the hypoxia-induced pro-survival response of macrophages exhibits a dependence on PI3-kinase and mTOR activities but surprisingly is suppressed by Akt and p38 MAPK activities. It was also found that in hypoxia at CSF-1 concentrations, which under normoxic conditions are suboptimal for macrophage proliferation, macrophages can proliferate more strongly with no evidence for alteration in CSF-1 receptor degradation kinetics. TNF promoted macrophage survival in normoxic conditions with an additive effect in hypoxia. The enhanced hypoxia-dependent survival and/or proliferation of macrophages in the presence of CSF-1 or TNF may contribute to their elevated numbers at a site of chronic inflammation.


Journal of Orthopaedic Research | 2009

Low dose metal particles can induce monocyte/macrophage survival

Derek Lacey; B De Kok; Felix I.L. Clanchy; M J Bailey; K Speed; Stephen Graves; John A. Hamilton

Aseptic loosening results in pain, loss of function, and ultimately prosthetic joint failure and revision surgery. The generation of wear particles from the prosthesis is a major factor in local osteolysis. We investigated the effects of such wear particles on the survival of monocytes and macrophages, populations implicated in wear particle‐driven pathology. Particles from titanium aluminum vanadium (TiAlV) and cobalt chromium (CoCr) alloys were generated in‐house and were equivalent in size (0.5–3 µm) to those seen in patients. Human CD14+ monocytes and murine bone marrow‐derived macrophages (BMM) were treated with TiAlV and CoCr particles in vitro, and cell survival was assayed. Both particles increased monocyte and macrophage survival in a dose‐dependent manner, with an optimal concentration of around 107 particles/mL. Conditioned media from particle‐treated BMM also increased macrophage survival. Studies with antibody blockade and gene‐deficient mice suggest that particle‐induced BMM survival is independent of endogenous CSF‐1 (M‐CSF), GM‐CSF, and TNFα. These data indicate that wear particles can promote monocyte/macrophage survival in vitro possibly via an endogenous mediator. If this phenomenon occurs in vivo, it could mean that increased numbers of macrophages (and osteoclasts) would be found at a site of joint implant failure, which could contribute to the local inflammatory reaction and osteolysis.

Collaboration


Dive into the Derek Lacey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernard de Kok

Royal Melbourne Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge