Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek M. Johnson is active.

Publication


Featured researches published by Derek M. Johnson.


Nature | 2006

Allee effects and pulsed invasion by the gypsy moth.

Derek M. Johnson; Andrew M. Liebhold; Ottar N. Bjørnstad

Biological invasions pose considerable threats to the world’s ecosystems and cause substantial economic losses. A prime example is the invasion of the gypsy moth in the United States, for which more than


Population Ecology | 2009

The role of Allee effects in gypsy moth, Lymantria dispar (L.), invasions

Patrick C. Tobin; Christelle Robinet; Derek M. Johnson; Stefanie Whitmire; Ottar N. Bjørnstad; Andrew M. Liebhold

194 million was spent on management and monitoring between 1985 and 2004 alone. The spread of the gypsy moth across eastern North America is, perhaps, the most thoroughly studied biological invasion in the world, providing a unique opportunity to explore spatiotemporal variability in rates of spread. Here we describe evidence for periodic pulsed invasions, defined as regularly punctuated range expansions interspersed among periods of range stasis. We use a theoretical model with parameter values estimated from long-term monitoring data to show how an interaction between strong Allee effects (negative population growth at low densities) and stratified diffusion (most individuals disperse locally, but a few seed new colonies by long-range movement) can explain the invasion pulses. Our results indicate that suppressing population peaks along range borders might greatly slow invasion.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Climatic warming disrupts recurrent Alpine insect outbreaks.

Derek M. Johnson; Ulf Büntgen; David Frank; Kyrre L. Kausrud; Kyle J. Haynes; Andrew M. Liebhold; Jan Esper; Nils Chr. Stenseth

Allee effects have been applied historically in efforts to understand the low-density population dynamics of rare and endangered species. Many biological invasions likewise experience the phenomenon of decreasing population growth rates at low population densities because most founding populations of introduced nonnative species occur at low densities. In range expansion of established species, the initial colonizers of habitat beyond the organism’s current range are usually at low density, and thus could be subject to Allee dynamics. There has been consistent empirical and theoretical evidence demonstrating, and in some cases quantifying, the role of Allee dynamics in the gypsy moth, Lymantria dispar (L.), invasion of North America. In this review, we examine the potential causes of the Allee effect in the gypsy moth and highlight the importance of mate-finding failure as a primary mechanism behind an Allee effect, while the degree to which generalist predators induce an Allee effect remains unclear. We then explore the role of Allee effects in the establishment and spread dynamics of the gypsy moth system, which conceptually could serve as a model system for understanding how Allee effects manifest themselves in the dynamics of biological invasions.


New Phytologist | 2009

Three centuries of insect outbreaks across the European Alps

Ulf Büntgen; David Frank; Andrew M. Liebhold; Derek M. Johnson; Marco Carrer; Carlo Urbinati; Michael Grabner; Kurt Nicolussi; Tom Levanič; Jan Esper

Climate change has been identified as a causal factor for diverse ecological changes worldwide. Warming trends over the last couple of decades have coincided with the collapse of long-term population cycles in a broad range of taxa, although causal mechanisms are not well-understood. Larch budmoth (LBM) population dynamics across the European Alps, a classic example of regular outbreaks, inexplicably changed sometime during the 1980s after 1,200 y of nearly uninterrupted periodic outbreak cycles. Herein, analysis of perhaps the most extensive spatiotemporal dataset of population dynamics and reconstructed Alpine-wide LBM defoliation records reveals elevational shifts in LBM outbreak epicenters that coincide with temperature fluctuations over two centuries. A population model supports the hypothesis that temperature-mediated shifting of the optimal elevation for LBM population growth is the mechanism for elevational epicenter changes. Increases in the optimal elevation for population growth over the warming period of the last century to near the distributional limit of host larch likely dampened population cycles, thereby causing the collapse of a millennium-long outbreak cycle. The threshold-like change in LBM outbreak pattern highlights how interacting species with differential response rates to climate change can result in dramatic ecological changes.


Population Ecology | 2006

Geographic variation in density-dependent dynamics impacts the synchronizing effect of dispersal and regional stochasticity

Andrew M. Liebhold; Derek M. Johnson; Ottar N. Bjørnstad

Knowledge of the persistence of regular larch budmoth outbreaks is limited in space and time. Although dendrochronological methods have been used to reconstruct insect outbreaks, their presence may be obscured by climatic influences. More than 5000 tree-ring series from 70 larch host and 73 spruce nonhost sites within the European Alps and Tatra Mountains were compiled. Site-specific assessment of growth-climate responses and the application of six larch budmoth detection methods considering host, nonhost and instrumental time-series revealed spatiotemporal patterns of insect defoliation across the Alpine arc. Annual maps of reconstructed defoliation showed historical persistence of cyclic outbreaks at the site level, recurring c. every 8-9 yr. Larch budmoth outbreaks occurred independently of rising temperatures from the Little Ice Age until recent warmth. Although no collapse in outbreak periodicity was recorded at the local scale, synchronized Alpine-wide defoliation has ceased during recent decades. Our study demonstrates the persistence of recurring insect outbreaks during AD 1700-2000 and emphasizes that a widely distributed tree-ring network and novel analysis methods can contribute towards an understanding of the changes in outbreak amplitude, synchrony and climate dependence.


Ecology | 2009

Spatial synchrony propagates through a forest food web via consumer-resource interactions

Kyle J. Haynes; Andrew M. Liebhold; Todd M. Fearer; Guiming Wang; Gary W. Norman; Derek M. Johnson

Explanations for the ubiquitous presence of spatially synchronous population dynamics have assumed that density-dependent processes governing the dynamics of local populations are identical among disjunct populations, and low levels of dispersal or small amounts of regionalized stochasticity (“Moran effect”) can act to synchronize populations. In this study we used historical spatially referenced data on gypsy moth (Lymantria dispar) outbreaks to document that density-dependent processes can vary substantially across geographical landscapes. This variation may be due in part to geographical variation in habitat (e.g., variation in forest composition). We then used a second-order log-linear stochastic model to explore how inter-population variation in density-dependent processes affects synchronization via either synchronous stochastic forcing or dispersal. We found that geographical variation in direct density-dependence (first order) greatly diminishes synchrony caused by stochasticity but only slightly decreases synchronization via dispersal. Variation in delayed density-dependence (second order) diluted synchrony caused by regional stochasticity to a lesser extent than first-order variation, but it did not have any influence on synchrony caused by dispersal. In general, synchronization caused by dispersal was primarily dependent upon the instability of populations and only weakly, if at all, affected by similarities in density-dependence among populations. We conclude that studies of synchrony should carefully consider both the nature of the synchronizing agents and the pattern of local density-dependent processes, including how these vary geographically.


Oecologia | 2006

Landscape mosaic induces traveling waves of insect outbreaks.

Derek M. Johnson; Ottar N. Bjørnstad; Andrew M. Liebhold

In many study systems, populations fluctuate synchronously across large regions. Several mechanisms have been advanced to explain this, but their importance in nature is often uncertain. Theoretical studies suggest that spatial synchrony initiated in one species through Moran effects may propagate among trophically linked species, but evidence for this in nature is lacking. By applying the nonparametric spatial correlation function to time series data, we discover that densities of the gypsy moth, the moths chief predator (the white-footed mouse), and the mouses winter food source (red oak acorns) fluctuate synchronously over similar distances (approximately1000 km) and with similar levels of synchrony. In addition, we investigate the importance of consumer-resource interactions in propagating synchrony among species using an empirically informed simulation model of interactions between acorns, the white-footed mouse, the gypsy moth, and a viral pathogen of the gypsy moth. Our results reveal that regional stochasticity acting directly on populations of the mouse, moth, or pathogen likely has little effect on levels of the synchrony displayed by these species. In contrast, synchrony in mast seeding can propagate across trophic levels, thus explaining observed levels of synchrony in both white-footed mouse and gypsy moth populations. This work suggests that the transfer of synchrony among trophically linked species may be a major factor causing interspecific synchrony.


Population Ecology | 2012

Elevational gradient in the cyclicity of a forest-defoliating insect

Kyle J. Haynes; Andrew M. Liebhold; Derek M. Johnson

The effect of landscape mosaic on recurrent traveling waves in spatial population dynamics was studied via simulation modeling across a theoretical landscape with varying levels of connectivity. Phase angle analysis was used to identify locations of wave epicenters on patchy landscapes. Simulations of a tri-trophic model of the larch budmoth (Zeiraphera diniana) with cyclic population dynamics on landscapes with a single focus of high-density habitat produced traveling waves generally radiating outwardly from single and multiple foci and spreading to isolated habitats. We have proposed two hypotheses for this result: (1) immigration subsidies inflate population growth rates in the high connectivity habitat and, thus, reduce the time from valleys to peaks in population cycles; (2) populations in the high connectivity habitat crash from peaks to valleys faster than in an isolated habitat due to over-compensatory density dependence. While population growth rates in the high connectivity habitat benefitted from immigration subsidies, times from population valleys to peaks were greater in high connectivity habitat due to a greater magnitude of fluctuations. Conversely, the mean time of the crash from population peaks to valleys was shorter in high connectivity habitat, supporting the second hypothesis. Results of this study suggest over-compensatory density dependence as an underlying mechanism for recurrent traveling waves originating in high connectivity habitats aggregated around a single focus.


Evolutionary Biology-new York | 2012

Diversity and Evolution of Body Size in Fishes

James S. Albert; Derek M. Johnson

Observed changes in the cyclicity of herbivore populations along latitudinal gradients and the hypothesis that shifts in the importance of generalist versus specialist predators explain such gradients has long been a matter of intense interest. In contrast, elevational gradients in population cyclicity are largely unexplored. We quantified the cyclicity of gypsy moth populations along an elevational gradient by applying wavelet analysis to spatially referenced 31-year records (1975–2005) of defoliation. Based on geographically weighted regression and nonlinear regression, we found either a hump-shaped or plateauing relationship between elevation and the cyclicity of gypsy moth populations and a positive relationship between cyclicity and the density of the gypsy moth’s preferred host-tree species. The potential effects of elevational gradients in the density of generalist predators and preferred host-tree species on the cyclicity of gypsy moth populations were evaluated with mechanistic simulation models. The models suggested that an elevational gradient in the densities of preferred host tree species could partially explain elevational patterns of gypsy moth cyclicity. Results from a model assuming a type-III functional response of generalist predators to changes in gypsy moth density were inconsistent with the observed elevational gradient in gypsy moth cyclicity. However, a model with a more realistic type-II functional response gave results roughly consistent with the empirical findings. In contrast to classical studies on the effects of generalist predators on prey population cycles, our model with a type-II functional response predicts a unimodal relationship between generalist-predator density and the cyclicity of gypsy moth populations.


Ecology | 2015

Temporal variation in the synchrony of weather and its consequences for spatiotemporal population dynamics.

Andrew J. Allstadt; Andrew M. Liebhold; Derek M. Johnson; Robert E. Davis; Kyle J. Haynes

The diversity of body sizes observed among species of a clade is a combined result of microevolutionary processes (i.e. natural selection and genetic drift) that cause size changes within phylogenetic lineages, and macroevolutionary processes (i.e. speciation and extinction) that affect net rates of diversification among lineages. Here we assess trends of size diversity and evolution in fishes (non-tetrapod craniates), employing paleontological, macroecological, and phylogenetic information. Fishes are well suited to studies of size diversity and evolution, as they are highly diverse, representing more than 50% of all living vertebrate species, and many fish taxa are well represented in the fossil record from throughout the Phanerozoic. Further, the frequency distributions of sizes among fish lineages resemble those of most other animal taxa, in being right-skewed, even on a log scale. Using an approach that measures rates of size evolution (in darwins) within a formal phylogenetic framework, we interpret the shape of size distributions as a balance between the competing forces of diversification, pushing taxa away from ancestral values, and of conservation, drawing taxa closer to a central tendency. Within this context we show how non-directional mechanisms of evolution (i.e. passive diffusion processes) can produce an hitherto unperceived bias to larger size, when size is measured on the conventional log scale. These results demonstrate how the interpretation of macroecological datasets can be enriched from an historical perspective, and document the ways in which macroevolutionary and microevolutionary processes may be decoupled in the production of size diversity.

Collaboration


Dive into the Derek M. Johnson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ottar N. Bjørnstad

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan A. Walter

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Allstadt

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulf Büntgen

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge