Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek Ogg is active.

Publication


Featured researches published by Derek Ogg.


Journal of Medicinal Chemistry | 2013

Thiazolopyridine Ureas as Novel Antitubercular Agents Acting through Inhibition of DNA Gyrase B.

Manoj Kale; Anandkumar Raichurkar; Shahul Hameed P; David Waterson; David C. McKinney; M. R. Manjunatha; Usha Kranthi; Krishna Koushik; Lalit kumar Jena; Vikas Shinde; Suresh Rudrapatna; Shubhada Barde; Vaishali Humnabadkar; Prashanti Madhavapeddi; Halesha D. Basavarajappa; Anirban Ghosh; V. K. Ramya; Supreeth Guptha; Sreevalli Sharma; Prakash Vachaspati; K.N. Mahesh Kumar; Jayashree Giridhar; Jitendar Reddy; Samit Ganguly; Vijaykamal Ahuja; Sheshagiri Gaonkar; C. N. Naveen Kumar; Derek Ogg; Julie Tucker; P. Ann Boriack-Sjodin

A pharmacophore-based search led to the identification of thiazolopyridine ureas as a novel scaffold with antitubercular activity acting through inhibition of DNA Gyrase B (GyrB) ATPase. Evaluation of the binding mode of thiazolopyridines in a Mycobacterium tuberculosis (Mtb) GyrB homology model prompted exploration of the side chains at the thiazolopyridine ring C-5 position to access the ribose/solvent pocket. Potent compounds with GyrB IC50 ≤ 1 nM and Mtb MIC ≤ 0.1 μM were obtained with certain combinations of side chains at the C-5 position and heterocycles at the C-6 position of the thiazolopyridine core. Substitutions at C-5 also enabled optimization of the physicochemical properties. Representative compounds were cocrystallized with Streptococcus pneumoniae (Spn) ParE; these confirmed the binding modes predicted by the homology model. The target link to GyrB was confirmed by genetic mapping of the mutations conferring resistance to thiazolopyridine ureas. The compounds are bactericidal in vitro and efficacious in vivo in an acute murine model of tuberculosis.


Journal of Medicinal Chemistry | 2012

Discovery of a Potent, Selective, and Orally Bioavailable Acidic 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) Inhibitor: Discovery of 2-[(3S)-1-[5-(Cyclohexylcarbamoyl)-6-propylsulfanylpyridin-2-yl]-3-piperidyl]acetic Acid (AZD4017)

James S. Scott; Suzanne S. Bowker; Joanne deSchoolmeester; Stefan Gerhardt; David Hargreaves; Elaine Kilgour; Adele Lloyd; Rachel M. Mayers; William Mccoull; Nicholas John Newcombe; Derek Ogg; Martin J. Packer; Amanda Rees; John Revill; Paul Schofield; Nidhal Selmi; John G. Swales; Paul R.O. Whittamore

Inhibition of 11β-HSD1 is an attractive mechanism for the treatment of obesity and other elements of the metabolic syndrome. We report here the discovery of a nicotinic amide derived carboxylic acid class of inhibitors that has good potency, selectivity, and pharmacokinetic characteristics. Compound 11i (AZD4017) is an effective inhibitor of 11β-HSD1 in human adipocytes and exhibits good druglike properties and as a consequence was selected for clinical development.


Journal of Medicinal Chemistry | 2012

Protein-Ligand Crystal Structures Can Guide the Design of Selective Inhibitors of the FGFR Tyrosine Kinase.

Richard A. Norman; Anne-Kathrin Schott; David M. Andrews; Jason Breed; Kevin Michael Foote; Andrew P. Garner; Derek Ogg; Jonathon P. Orme; Jennifer H. Pink; Karen Roberts; David Alan Rudge; Andrew Peter Thomas; Andrew G. Leach

The design of compounds that selectively inhibit a single kinase is a significant challenge, particularly for compounds that bind to the ATP site. We describe here how protein-ligand crystal structure information was able both to rationalize observed selectivity and to guide the design of more selective compounds. Inhibition data from enzyme and cellular screens and the crystal structures of a range of ligands tested during the process of identifying selective inhibitors of FGFR provide a step-by-step illustration of the process. Steric effects were exploited by increasing the size of ligands in specific regions in such a way as to be tolerated in the primary target and not in other related kinases. Kinases are an excellent target class to exploit such approaches because of the conserved fold and small side chain mobility of the active form.


Nature Chemical Biology | 2016

Potent and selective bivalent inhibitors of BET bromodomains

Michael J. Waring; Huawei Chen; Alfred A. Rabow; Graeme Walker; Romel Bobby; Scott Boiko; Rob H. Bradbury; Rowena Callis; Edwin Clark; Ian L. Dale; Danette L. Daniels; Austin Dulak; Liz Flavell; Geoff Holdgate; Thomas A. Jowitt; Alexey Kikhney; Mark S. McAlister; Jacqui Mendez; Derek Ogg; Joe Patel; Philip Petteruti; Graeme R. Robb; Matthew B. Robers; Sakina Saif; Natalie Stratton; Dmitri I. Svergun; Wenxian Wang; David Whittaker; David Wilson; Yi Yao

Proteins of the bromodomain and extraterminal (BET) family, in particular bromodomain-containing protein 4 (BRD4), are of great interest as biological targets. BET proteins contain two separate bromodomains, and existing inhibitors bind to them monovalently. Here we describe the discovery and characterization of probe compound biBET, capable of engaging both bromodomains simultaneously in a bivalent, in cis binding mode. The evidence provided here was obtained in a variety of biophysical and cellular experiments. The bivalent binding results in very high cellular potency for BRD4 binding and pharmacological responses such as disruption of BRD4-mediator complex subunit 1 foci with an EC50 of 100 pM. These compounds will be of considerable utility as BET/BRD4 chemical probes. This work illustrates a novel concept in ligand design-simultaneous targeting of two separate domains with a drug-like small molecule-providing precedent for a potentially more effective paradigm for developing ligands for other multi-domain proteins.


Bioorganic & Medicinal Chemistry Letters | 2014

Thiazolopyridone ureas as DNA gyrase B inhibitors: optimization of antitubercular activity and efficacy.

Ramesh R. Kale; Manoj Kale; David Waterson; Anandkumar Raichurkar; Shahul P. Hameed; M. R. Manjunatha; B. K. Kishore Reddy; Krishnan Malolanarasimhan; Vikas Shinde; Krishna Koushik; Lalit kumar Jena; Sreenivasaiah Menasinakai; Vaishali Humnabadkar; Prashanti Madhavapeddi; Halesha D. Basavarajappa; Sreevalli Sharma; Radha Nandishaiah; K.N. Mahesh Kumar; Samit Ganguly; Vijaykamal Ahuja; Sheshagiri Gaonkar; C. N. Naveen Kumar; Derek Ogg; P. Ann Boriack-Sjodin; Vasan K. Sambandamurthy; Sunita M. de Sousa; Sandeep R. Ghorpade

Scaffold hopping from the thiazolopyridine ureas led to thiazolopyridone ureas with potent antitubercular activity acting through inhibition of DNA GyrB ATPase activity. Structural diversity was introduced, by extension of substituents from the thiazolopyridone N-4 position, to access hydrophobic interactions in the ribose pocket of the ATP binding region of GyrB. Further optimization of hydrogen bond interactions with arginines in site-2 of GyrB active site pocket led to potent inhibition of the enzyme (IC50 2 nM) along with potent cellular activity (MIC=0.1 μM) against Mycobacterium tuberculosis (Mtb). Efficacy was demonstrated in an acute mouse model of tuberculosis on oral administration.


Journal of Medicinal Chemistry | 2012

Novel Acidic 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) Inhibitor with Reduced Acyl Glucuronide Liability: The Discovery of 4-[4-(2-Adamantylcarbamoyl)-5-tert-butyl-pyrazol-1-yl]benzoic Acid (AZD8329)

James S. Scott; Joanne deSchoolmeester; Elaine Kilgour; Rachel M. Mayers; Martin J. Packer; David Hargreaves; Stefan Gerhardt; Derek Ogg; Amanda Rees; Nidhal Selmi; Andrew Stocker; John G. Swales; Paul R.O. Whittamore

Inhibition of 11β-HSD1 is viewed as a potential target for the treatment of obesity and other elements of the metabolic syndrome. We report here the optimization of a carboxylic acid class of inhibitors from AZD4017 (1) to the development candidate AZD8329 (27). A structural change from pyridine to pyrazole together with structural optimization led to an improved technical profile in terms of both solubility and pharmacokinetics. The extent of acyl glucuronidation was reduced through structural optimization of both the carboxylic acid and amide substituents, coupled with a reduction in lipophilicity leading to an overall increase in metabolic stability.


ACS Medicinal Chemistry Letters | 2015

Pyrimidinone Nicotinamide Mimetics as Selective Tankyrase and Wnt Pathway Inhibitors Suitable for in Vivo Pharmacology

Jeffrey W. Johannes; Lynsie Almeida; Bernard Barlaam; P. Ann Boriack-Sjodin; Robert Casella; Rosemary A. Croft; Allan Dishington; Lakshmaiah Gingipalli; Chungang Gu; Janet Hawkins; Jane L. Holmes; Tina Howard; Jian Huang; Stephanos Ioannidis; Steven Kazmirski; Michelle L. Lamb; Thomas M. McGuire; Jane E. Moore; Derek Ogg; Anil Patel; Kurt Gordon Pike; Timothy Pontz; Graeme R. Robb; Nancy Su; Haiyun Wang; Xiaoyun Wu; Hai-Jun Zhang; Yue Zhang; Xiaolan Zheng; Tao Wang

The canonical Wnt pathway plays an important role in embryonic development, adult tissue homeostasis, and cancer. Germline mutations of several Wnt pathway components, such as Axin, APC, and ß-catenin, can lead to oncogenesis. Inhibition of the poly(ADP-ribose) polymerase (PARP) catalytic domain of the tankyrases (TNKS1 and TNKS2) is known to inhibit the Wnt pathway via increased stabilization of Axin. In order to explore the consequences of tankyrase and Wnt pathway inhibition in preclinical models of cancer and its impact on normal tissue, we sought a small molecule inhibitor of TNKS1/2 with suitable physicochemical properties and pharmacokinetics for hypothesis testing in vivo. Starting from a 2-phenyl quinazolinone hit (compound 1), we discovered the pyrrolopyrimidinone compound 25 (AZ6102), which is a potent TNKS1/2 inhibitor that has 100-fold selectivity against other PARP family enzymes and shows 5 nM Wnt pathway inhibition in DLD-1 cells. Moreover, compound 25 can be formulated well in a clinically relevant intravenous solution at 20 mg/mL, has demonstrated good pharmacokinetics in preclinical species, and shows low Caco2 efflux to avoid possible tumor resistance mechanisms.


Oncotarget | 2016

Landscape of activating cancer mutations in FGFR kinases and their differential responses to inhibitors in clinical use

Harshnira Patani; Tom D. Bunney; Nethaji Thiyagarajan; Richard A. Norman; Derek Ogg; Jason Breed; Paul Ashford; Andrew Potterton; Mina Edwards; Sarah Williams; Gary S. Thomson; Camilla S.M. Pang; Margaret A. Knowles; Alexander L. Breeze; Christine A. Orengo; Christopher Phillips; Matilda Katan

Frequent genetic alterations discovered in FGFRs and evidence implicating some as drivers in diverse tumors has been accompanied by rapid progress in targeting FGFRs for anticancer treatments. Wider assessment of the impact of genetic changes on the activation state and drug responses is needed to better link the genomic data and treatment options. We here apply a direct comparative and comprehensive analysis of FGFR3 kinase domain variants representing the diversity of point-mutations reported in this domain. We reinforce the importance of N540K and K650E and establish that not all highly activating mutations (for example R669G) occur at high-frequency and conversely, that some “hotspots” may not be linked to activation. Further structural characterization consolidates a mechanistic view of FGFR kinase activation and extends insights into drug binding. Importantly, using several inhibitors of particular clinical interest (AZD4547, BGJ-398, TKI258, JNJ42756493 and AP24534), we find that some activating mutations (including different replacements of the same residue) result in distinct changes in their efficacy. Considering that there is no approved inhibitor for anticancer treatments based on FGFR-targeting, this information will be immediately translatable to ongoing clinical trials.


MedChemComm | 2013

Optimising pharmacokinetics of glucokinase activators with matched triplicate design sets – the discovery of AZD3651 and AZD9485

Michael J. Waring; Stuart Norman Lile Bennett; Scott Boyd; Leonie Campbell; Robert D. M. Davies; David Hargreaves; Philip A. MacFaul; Nathaniel G. Martin; Derek Ogg; Graeme R. Robb; Gary Wilkinson; J. Matthew Wood

The matched triplicate approach to lead optimisation offers a means of generating more robust quantitative structure activity relationship data and this rigour leads to better quality decision making and greater ability to predict optimal compounds within a series. One of the ultimate aims of this approach is to use the data generated to build more accurate predictive models to identify the best compounds within the exemplified chemical space in an efficient manner. This paper describes the continued application of this approach to the optimisation of a series of glucokinase activators. This second phase focussed primarily on the rational solution to plasma instability observed with the previous compounds and, hence, achieved acceptable oral exposure in the series. The campaign was completed by using the predictive power of Free-Wilson analysis based on the matched triplicate datasets to enable a focussed, matrix based endgame culminating in the identification of two development candidates, AZD3651 and AZD9485.


MedChemComm | 2014

Identification and optimisation of 3,3-dimethyl-azetidin-2-ones as potent and selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1)

William Mccoull; Martin Augustin; Caroline Blake; Anne Ertan; Elaine Kilgour; Stephan Krapp; Jane E. Moore; Nicholas John Newcombe; Martin J. Packer; Amanda Rees; John Revill; James S. Scott; Nidhal Selmi; Stefan Gerhardt; Derek Ogg; Stefan Steinbacher; Paul R.O. Whittamore

3,3-Di-methyl-azetidin-2-ones were identified as potent and selective 11β-HSD1 inhibitors against the human and mouse forms of the enzyme. Structure guided optimisation of LLE was conducted, utilising a key polar interaction and identifying stereochemical preference for the 4S isomer. Metabolic stability was improved to afford oral exposure, providing tool compounds suitable for pre-clinical evaluation.

Collaboration


Dive into the Derek Ogg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge