Derek S. Gilchrist
University of Glasgow
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Derek S. Gilchrist.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Mariola Kurowska-Stolarska; Stefano Alivernini; LucyE. Ballantine; Darren L. Asquith; Neal L. Millar; Derek S. Gilchrist; James H. Reilly; Michelle Ierna; Alasdair R. Fraser; Bartosz Stolarski; Charles McSharry; Axel J. Hueber; Derek Baxter; John C. Hunter; Foo Y. Liew; Iain B. McInnes
MicroRNA (miRNA) species (miR) regulate mRNA translation and are implicated as mediators of disease pathology via coordinated regulation of molecular effector pathways. Unraveling miR disease-related activities will facilitate future therapeutic interventions. miR-155 recently has been identified with critical immune regulatory functions. Although detected in articular tissues, the functional role of miR-155 in inflammatory arthritis has not been defined. We report here that miR-155 is up-regulated in synovial membrane and synovial fluid (SF) macrophages from patients with rheumatoid arthritis (RA). The increased expression of miR-155 in SF CD14+ cells was associated with lower expression of the miR-155 target, Src homology 2-containing inositol phosphatase-1 (SHIP-1), an inhibitor of inflammation. Similarly, SHIP-1 expression was decreased in CD68+ cells in the synovial lining layer in RA patients as compared with osteoarthritis patients. Overexpression of miR-155 in PB CD14+ cells led to down-regulation of SHIP-1 and an increase in the production of proinflammatory cytokines. Conversely, inhibition of miR-155 in RA synovial CD14+ cells reduced TNF-α production. Finally, miR-155–deficient mice are resistant to collagen-induced arthritis, with profound suppression of antigen-specific Th17 cell and autoantibody responses and markedly reduced articular inflammation. Our data therefore identify a role of miR-155 in clinical and experimental arthritis and suggest that miR-155 may be an intriguing therapeutic target.
Journal of Clinical Investigation | 2007
Robert J. B. Nibbs; Derek S. Gilchrist; Vicky King; Antonio Ferra; Steve Forrow; Keith D. Hunter; Gerard J. Graham
A subset of CC chemokines, acting through CC chemokine receptors (CCRs) 1 to 5, is instrumental in shaping inflammatory responses. Recently, we and others have demonstrated that the atypical chemokine receptor D6 actively sequesters and destroys many of these proinflammatory CC chemokines. This is critical for effective resolution of inflammation in vivo. Inflammation can be protumorigenic, and proinflammatory CC chemokines have been linked with various aspects of cancer biology, yet there is scant evidence supporting a critical role for these molecules in de novo tumor formation. Here, we show that D6-deficient mice have increased susceptibility to cutaneous tumor development in response to chemical carcinogenesis protocols and, remarkably, that D6 deletion is sufficient to make resistant mouse strains susceptible to invasive squamous cell carcinoma. Conversely, transgenic D6 expression in keratinocytes dampens cutaneous inflammation and can confer considerable protection from tumor formation in susceptible backgrounds. Tumor susceptibility consistently correlated with the level of recruitment of T cells and mast cells, cell types known to support the development of skin tumors in mice. These data demonstrate the importance of proinflammatory CC chemokines in de novo tumorigenesis and reveal chemokine sequestration by D6 to be a novel and effective method of tumor suppression.
Journal of Immunology | 2008
Yubin Li; Mousa Komai-Koma; Derek S. Gilchrist; Daniel K. Hsu; Fu Tong Liu; Tabitha Springall; Damo Xu
Galectin-3 is a β-galactoside-binding lectin that plays an important role in inflammatory diseases. It also interacts with the surface carbohydrates of many pathogens, including LPS. However, its role in infection is not fully understood. Data presented herein demonstrate for the first time that galectin-3 is a negative regulator of LPS-induced inflammation. Galectin-3 is constitutively produced by macrophages and directly binds to LPS. Galectin-3-deficient macrophages had markedly elevated LPS-induced signaling and inflammatory cytokine production compared with wild-type cells, which was specifically inhibited by the addition of recombinant galectin-3 protein. In contrast, blocking galectin-3 binding sites by using a neutralizing Ab or its ligand, β-lactose, enhanced LPS-induced inflammatory cytokine expression by wild-type macrophages. In vivo, mice lacking galectin-3 were more susceptible to LPS shock associated with excessive induction of inflammatory cytokines and NO production. However, these changes conferred greater resistance to Salmonella infection. Thus, galectin-3 is a previously unrecognized, naturally occurring, negative regulator of LPS function, which protects the host from endotoxin shock but, conversely, favors Salmonella survival.
PLOS ONE | 2013
Ashley M. Miller; Derek S. Gilchrist; J S Nijjar; Elisa Araldi; Cristina M. Ramírez; Christopher A. Lavery; Carlos Fernández-Hernando; Iain B. McInnes; Mariola Kurowska-Stolarska
Hepatic steatosis is a global epidemic that is thought to contribute to the pathogenesis of type 2 diabetes. MicroRNAs (miRs) are regulators that can functionally integrate a range of metabolic and inflammatory pathways in liver. We aimed to investigate the functional role of miR-155 in hepatic steatosis. Male C57BL/6 wild-type (WT) and miR-155−/− mice were fed either normal chow or high fat diet (HFD) for 6 months then lipid levels, metabolic and inflammatory parameters were assessed in livers and serum of the mice. Mice lacking endogenous miR-155 that were fed HFD for 6 months developed increased hepatic steatosis compared to WT controls. This was associated with increased liver weight and serum VLDL/LDL cholesterol and alanine transaminase (ALT) levels, as well as increased hepatic expression of genes involved in glucose regulation (Pck1, Cebpa), fatty acid uptake (Cd36) and lipid metabolism (Fasn, Fabp4, Lpl, Abcd2, Pla2g7). Using miRNA target prediction algorithms and the microarray transcriptomic profile of miR-155−/− livers, we identified and validated that Nr1h3 (LXRα) as a direct miR-155 target gene that is potentially responsible for the liver phenotype of miR-155−/− mice. Together these data indicate that miR-155 plays a pivotal role regulating lipid metabolism in liver and that its deregulation may lead to hepatic steatosis in patients with diabetes.
Journal of Immunology | 2011
Mousa Komai-Koma; Derek S. Gilchrist; Andrew N. J. McKenzie; Carl S. Goodyear; Damo Xu; Foo Y. Liew
B1 B cells produce natural IgM and play a critical role in the early defense against bacterial and viral infection. The polyreactive IgM also contributes to the clearance of apoptotic products and plays an important role in autoimmune pathogenesis. However, the mechanism of activation and proliferation of B1 cells remains obscure. In this study, we report that IL-33, a new member of IL-1 family, activates B1 cells, which express the IL-33 receptor α, ST2. IL-33 markedly activated B1 cell proliferation and enhanced IgM, IL-5, and IL-13 production in vitro and in vivo in a ST2-dependent manner. The IL-33–activated B1 cell functions could be largely abolished by IL-5 neutralization and partially reduced by T cell or mast cell deficiency in vivo. ST2-deficient mice developed less severe oxazolone-induced contact sensitivity (CS) than did wild-type (WT) mice. Furthermore, IL-33 treatment significantly exacerbated CS in WT mice with enhanced B1 cell proliferation and IgM and IL-5 production. Moreover, IL-33–activated B1 cells from WT mice could adoptively transfer enhanced CS in ST2−/− mice challenged with IL-33. Thus, we demonstrate, to the best of our knowledge, a hitherto unrecognized mechanism of B1 cell activation and IL-33 function, and suggest that IL-33 may play an important role in delayed-type hypersensitivity.
Blood | 2011
Kit Ming Lee; Clive S. McKimmie; Derek S. Gilchrist; Kenneth Pallas; Robert J. B. Nibbs; Paul Garside; Victoria McDonald; Christopher Jenkins; Richard M. Ransohoff; LiPing Liu; Simon Milling; Vuk Cerovic; Gerard J. Graham
Lymphatic endothelial cells are important for efficient flow of antigen-bearing fluid and antigen-presenting cells (APCs) from peripheral sites to lymph nodes (LNs). APC movement to LNs is dependent on the constitutive chemokine receptor CCR7, although how conflicting inflammatory and constitutive chemokine cues are integrated at lymphatic surfaces during this process is not understood. Here we reveal a previously unrecognized aspect of the regulation of this process. The D6 chemokine-scavenging receptor, which is expressed on lymphatic endothelial cells (LECs), maintains lymphatic surfaces free of inflammatory CC-chemokines and minimizes interaction of inflammatory leukocytes with these surfaces. D6 does not alter the level of CCR7 ligands on LECs, thus ensuring selective presentation of homeostatic chemokines for interaction with CCR7(+) APCs. Accordingly, in D6-deficient mice, inflammatory CC-chemokine adherence to LECs results in inappropriate perilymphatic accumulation of inflammatory leukocytes at peripheral inflamed sites and draining LNs. This results in lymphatic congestion and impaired movement of APCs, and fluid, from inflamed sites to LNs. We propose that D6, by suppressing inflammatory chemokine binding to lymphatic surfaces, and thereby preventing inappropriate inflammatory leukocyte adherence, is a key regulator of lymphatic function and a novel, and indispensable, contributor to the integration of innate and adaptive immune responses.
Nature Communications | 2015
Neal L. Millar; Derek S. Gilchrist; Moeed Akbar; James H. Reilly; Shauna Kerr; Abigail L. Campbell; George A. C. Murrell; Foo Yew Eddy Liew; Mariola Kurowska-Stolarska; Iain B. McInnes
MicroRNA (miRNA) has the potential for cross-regulation and functional integration of discrete biological processes during complex physiological events. Utilizing the common human condition tendinopathy as a model system to explore the cross-regulation of immediate inflammation and matrix synthesis by miRNA we observed that elevated IL-33 expression is a characteristic of early tendinopathy. Using in vitro tenocyte cultures and in vivo models of tendon damage, we demonstrate that such IL-33 expression plays a pivotal role in the transition from type 1 to type 3 collagen (Col3) synthesis and thus early tendon remodelling. Both IL-33 effector function, via its decoy receptor sST2, and Col3 synthesis are regulated by miRNA29a. Downregulation of miRNA29a in human tenocytes is sufficient to induce an increase in Col3 expression. These data provide a molecular mechanism of miRNA-mediated integration of the early pathophysiologic events that facilitate tissue remodelling in human tendon after injury.
European Journal of Immunology | 2009
Mousa Komai-Koma; Derek S. Gilchrist; Damo Xu
LPS comprises a major PAMP and is a key target of the immune system during bacterial infection. While LPS can be recognised by innate immune cells via the TLR4 complex, it is unknown whether T lymphocytes, especially CD8+ T cells are also capable of doing so. We report here that naïve human CD8+ T cells, after activation by TCR stimulation, express surface TLR4 and CD14. These activated CD8+ T cells can then secrete high concentrations of IFN‐γ, granzyme and perforin in response to LPS. These effects can be specifically inhibited using siRNA for TLR4. Furthermore, LPS can synergise with IL‐12 to polarise the CD8+ T cells into cytotoxic T‐cell 1 (Tc1) that produce IFN‐γ but not IL‐4, with or without TCR activation. Moreover, CD8+CD45RO+ memory T cells constitutively expressed TLR4 and markedly enhanced IFN‐γ production when stimulated with LPS. In contrast, activated murine CD8+ T cells lack TLR4 and CD14 expression and fail to respond to LPS for proliferation and cytokine production. Thus, human but not murine CD8+ T cells are able to directly recognise bacterial LPS via LPS receptor complex and TLR4 provides a novel signal for the activation of effector and memory human CD8+ T cells.
BMC Genomics | 2006
Melany Jackson; Alistair J. Watt; Philippe Gautier; Derek S. Gilchrist; Johanna Driehaus; Gerard J. Graham; Jon Keebler; Franck Prugnolle; Lesley M. Forrester
BackgroundThe rodent specific reproductive homeobox (Rhox) gene cluster on the X chromosome has been reported to contain twelve homeobox-containing genes, Rhox1-12.ResultsWe have identified a 40 kb genomic region within the Rhox cluster that is duplicated eight times in tandem resulting in the presence of eight paralogues of Rhox2 and Rhox3 and seven paralogues of Rhox4. Transcripts have been identified for the majority of these paralogues and all but three are predicted to produce full-length proteins with functional potential. We predict that there are a total of thirty-two Rhox genes at this genomic location, making it the most gene-rich homoeobox cluster identified in any species. From the 95% sequence similarity between the eight duplicated genomic regions and the synonymous substitution rate of the Rhox2, 3 and 4 paralogues we predict that the duplications occurred after divergence of mouse and rat and represent the youngest homoeobox cluster identified to date. Molecular evolutionary analysis reveals that this cluster is an actively evolving region with Rhox2 and 4 paralogues under diversifying selection and Rhox3 evolving neutrally. The biological importance of this duplication is emphasised by the identification of an important role for Rhox2 and Rhox4 in regulating the initial stages of embryonic stem (ES) cell differentiation.ConclusionThe gene rich Rhox cluster provides the mouse with significant biological novelty that we predict could provide a substrate for speciation. Moreover, this unique cluster may explain species differences in ES cell derivation and maintenance between mouse, rat and human.
Rheumatology | 2016
Aziza Elmesmari; Alasdair R. Fraser; Claire Wood; Derek S. Gilchrist; Diane Vaughan; Lynn Stewart; Charles McSharry; Iain B. McInnes; Mariola Kurowska-Stolarska
Objective. To test the hypothesis that miR-155 regulates monocyte migratory potential via modulation of chemokine and chemokine receptor expression in RA, and thereby is associated with disease activity. Methods. The miR-155 copy-numbers in monocytes from peripheral blood (PB) of healthy (n = 22), RA (n = 24) and RA SF (n = 11) were assessed by real time-PCR using synthetic miR-155 as a quantitative standard. To evaluate the functional impact of miR-155, human monocytes were transfected with control or miR-155 mimic, and the effect on transcript levels, and production of chemokines was evaluated by Taqman low-density arrays and multiplex assays. A comparative study evaluated constitutive chemokine receptor expression in miR-155−/− and wild-type murine (CD115 + Ly6C + Ly6G−) monocytes. Results. Compared with healthy monocytes, the miR-155 copy-number was higher in RA, peripheral blood (PB) and SF monocytes (PB P < 0.01, and SF P < 0.0001). The miR-155 copy-number in RA PB monocytes was higher in ACPA-positive compared with ACPA-negative patients (P = 0.033) and correlated (95% CI) with DAS28 (ESR), R = 0.728 (0.460, 0.874), and with tender, R = 0.631 (0.306, 0.824) and swollen, R = 0.503 (0.125, 0.753) joint counts. Enforced-expression of miR-155 in RA monocytes stimulated the production of CCL3, CCL4, CCL5 and CCL8; upregulated CCR7 expression; and downregulated CCR2. Conversely, miR155−/− monocytes showed downregulated CCR7 and upregulated CCR2 expression. Conclusion. Given the observed correlations with disease activity, these data provide strong evidence that miR-155 can contribute to RA pathogenesis by regulating chemokine production and pro-inflammatory chemokine receptor expression, thereby promoting inflammatory cell recruitment and retention in the RA synovium.