Derek S. Welsbie
Johns Hopkins University School of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Derek S. Welsbie.
Nature Medicine | 2004
Charlie D. Chen; Derek S. Welsbie; Chris Tran; Sung Hee Baek; Randy Chen; Robert L. Vessella; Michael G. Rosenfeld; Charles L. Sawyers
Using microarray-based profiling of isogenic prostate cancer xenograft models, we found that a modest increase in androgen receptor mRNA was the only change consistently associated with the development of resistance to antiandrogen therapy. This increase in androgen receptor mRNA and protein was both necessary and sufficient to convert prostate cancer growth from a hormone-sensitive to a hormone-refractory stage, and was dependent on a functional ligand-binding domain. Androgen receptor antagonists showed agonistic activity in cells with increased androgen receptor levels; this antagonist-agonist conversion was associated with alterations in the recruitment of coactivators and corepressors to the promoters of androgen receptor target genes. Increased levels of androgen receptor confer resistance to antiandrogens by amplifying signal output from low levels of residual ligand, and by altering the normal response to antagonists. These findings provide insight toward the design of new antiandrogens.
Science | 2009
Chris Tran; Samedy Ouk; Nicola J. Clegg; Yu Chen; Philip A. Watson; Vivek K. Arora; John Wongvipat; Peter Smith-Jones; Dongwon Yoo; Andrew Kwon; Teresa Wasielewska; Derek S. Welsbie; Charlie D. Chen; Celestia S. Higano; Tomasz M. Beer; David T. Hung; Howard I. Scher; Michael E. Jung; Charles L. Sawyers
A Second Act for Antiandrogens Men with advanced prostate cancer are often treated with antiandrogens; drugs that inhibit the activity of male hormones, such as testosterone, that help drive tumor growth. Many of these drugs act by functionally disrupting the androgen receptor (AR), a transcriptional regulator of cell proliferation, but tumors eventually become resistant to the drugs by expressing higher levels of the AR. Tran et al. (p. 787, published online 9 April) have developed a “second-generation” antiandrogen, a thiohydantoin called MDV3100, which binds the AR with high affinity. MDV3100 retains its anticancer activity in cell culture and in mouse models even when AR levels are elevated. The drug appears to act both by inhibiting translocation of the AR into the nucleus and by reducing its transcriptional activity. MDV3100 is being tested in patients with advanced prostate cancer, the first group of which have shown a decline in blood levels of a marker of cancer growth, prostate-specific antigen. A drug that binds to the androgen receptor acts by disrupting its activity in the cell nucleus. Metastatic prostate cancer is treated with drugs that antagonize androgen action, but most patients progress to a more aggressive form of the disease called castration-resistant prostate cancer, driven by elevated expression of the androgen receptor. Here we characterize the diarylthiohydantoins RD162 and MDV3100, two compounds optimized from a screen for nonsteroidal antiandrogens that retain activity in the setting of increased androgen receptor expression. Both compounds bind to the androgen receptor with greater relative affinity than the clinically used antiandrogen bicalutamide, reduce the efficiency of its nuclear translocation, and impair both DNA binding to androgen response elements and recruitment of coactivators. RD162 and MDV3100 are orally available and induce tumor regression in mouse models of castration-resistant human prostate cancer. Of the first 30 patients treated with MDV3100 in a Phase I/II clinical trial, 13 of 30 (43%) showed sustained declines (by >50%) in serum concentrations of prostate-specific antigen, a biomarker of prostate cancer. These compounds thus appear to be promising candidates for treatment of advanced prostate cancer.
Nature Medicine | 2006
George Thomas; Chris Tran; Ingo K. Mellinghoff; Derek S. Welsbie; Emily Chan; Barbara J. Fueger; Johannes Czernin; Charles L. Sawyers
Inhibitors of the kinase mammalian target of rapamycin (mTOR) have shown sporadic activity in cancer trials, leading to confusion about the appropriate clinical setting for their use. Here we show that loss of the Von Hippel-Lindau tumor suppressor gene (VHL) sensitizes kidney cancer cells to the mTOR inhibitor CCI-779 in vitro and in mouse models. Growth arrest caused by CCI-779 correlates with a block in translation of mRNA encoding hypoxia-inducible factor (HIF1A), and is rescued by expression of a VHL-resistant HIF1A cDNA lacking the 5′ untranslated region. VHL-deficient tumors show increased uptake of the positron emission tomography (PET) tracer fluorodeoxyglucose (FDG) in an mTOR-dependent manner. Our findings provide preclinical rationale for prospective, biomarker-driven clinical studies of mTOR inhibitors in kidney cancer and suggest that FDG-PET scans may have use as a pharmacodynamic marker in this setting.
Journal of Biological Chemistry | 1999
Andrew D. Watson; Ganesamoorthy Subbanagounder; Derek S. Welsbie; Kym F. Faull; Mohamad Navab; Michael E. Jung; Alan M. Fogelman; Judith A. Berliner
One of the earliest steps in the development of the atherosclerotic lesion is the accumulation of monocyte/macrophages within the vessel wall. Oxidized lipids present in minimally modified-low density lipoproteins (MM-LDL) contribute to this process by activating endothelial cells to express monocyte-specific adhesion molecules and chemoattractant factors. A major focus of our group has been the isolation and characterization of the biologically active oxidized lipids in MM-LDL. We have previously characterized three oxidized phospholipids present in MM-LDL, atherosclerotic lesions of fat fed rabbits, and autoxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (Ox-PAPC) that induced human aortic endothelial cells to adhere human monocytesin vitro. We have used sequential normal and reverse phase-high performance liquid chromatography to isolate various isomers of an oxidized phospholipid from autoxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine. The fatty acid in the sn-2 position of this biologically active isomer and its dehydration product was released by phospholipase A2 and characterized. Hydrogenation with platinum(IV) oxide/hydrogen suggested a cyclic moiety, and reduction with sodium borohydride suggested two reducible oxygen-containing groups in the molecule. The fragmentation pattern produced by electrospray ionization-collision induced dissociation-tandem mass spectrometry was consistent with a molecule resembling an E-ring prostaglandin with an epoxide at the 5,6 position. The structure of this lipid was confirmed by proton nuclear magnetic resonance spectroscopy analysis of the free fatty acid isolated from the dehydration product ofm/z 828.5. Based on these studies, we arrived at the structure of the biologically active oxidized phospholipids as 1-palmitoyl-2-(5,6-epoxyisoprostane E2)-sn-glycero-3-phosphocholine. The identification of this molecule adds epoxyisoprostanes to the growing list of biologically active isoprostanes.
Cancer Research | 2009
Derek S. Welsbie; Jin Xu; Yu Chen; Laetitia Borsu; Howard I. Scher; Neal Rosen; Charles L. Sawyers
Transcriptional activity of the androgen receptor (AR) is crucial for growth and survival of prostate cancer even upon development of resistance to androgen ablation and antiandrogen therapies. Therefore, novel therapies that can suppress AR transcriptional activity when conventional hormone therapies fail are needed. Here, we show that histone deacetylase (HDAC) inhibitors, including SAHA (vorinostat) and LBH589, which are currently being tested in clinic, could be such a therapy. HDAC inhibitors block the AR-mediated transcriptional activation of many genes, including the TMPRSS2 gene involved in fusion with ETS family members in a majority of prostate cancers. Genetic knockdown of either HDAC1 or HDAC3 can also suppress expression of AR-regulated genes, recapitulating the effect of HDAC inhibitor treatment. Whereas HDAC inhibitor treatment can lower androgen receptor protein levels in prostate cancer cells, we show that independent of AR protein levels, HDAC inhibitors block AR activity through inhibiting the assembly of coactivator/RNA polymerase II complex after AR binds to the enhancers of target genes. Failed complex assembly is associated with a phase shift in the cyclical wave of AR recruitment that typically occurs in response to ligand treatment. HDAC inhibitors retain the ability to block AR activity in castration-resistant prostate cancer models and, therefore, merit clinical investigation in this setting. The HDAC-regulated AR target genes defined here can serve as biomarkers to ensure sufficient levels of HDAC inhibition.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Derek S. Welsbie; Zhiyong Yang; Yan Ge; Katherine L. Mitchell; Xinrong Zhou; Scott E. Martin; Cynthia Berlinicke; Laszlo Hackler; John L. Fuller; Jie Fu; Li Hui Cao; Bing Han; Douglas S. Auld; Tian Xue; Syu-ichi Hirai; Lucie Germain; Caroline Simard-Bisson; Richard Blouin; Judy V. Nguyen; Chung Ha O Davis; Raymond A. Enke; Sanford L. Boye; Shannath L. Merbs; Nicholas Marsh-Armstrong; William W. Hauswirth; Aaron DiAntonio; Robert W. Nickells; James Inglese; Justin Hanes; King Wai Yau
Glaucoma, a major cause of blindness worldwide, is a neurodegenerative optic neuropathy in which vision loss is caused by loss of retinal ganglion cells (RGCs). To better define the pathways mediating RGC death and identify targets for the development of neuroprotective drugs, we developed a high-throughput RNA interference screen with primary RGCs and used it to screen the full mouse kinome. The screen identified dual leucine zipper kinase (DLK) as a key neuroprotective target in RGCs. In cultured RGCs, DLK signaling is both necessary and sufficient for cell death. DLK undergoes robust posttranscriptional up-regulation in response to axonal injury in vitro and in vivo. Using a conditional knockout approach, we confirmed that DLK is required for RGC JNK activation and cell death in a rodent model of optic neuropathy. In addition, tozasertib, a small molecule protein kinase inhibitor with activity against DLK, protects RGCs from cell death in rodent glaucoma and traumatic optic neuropathy models. Together, our results establish a previously undescribed drug/drug target combination in glaucoma, identify an early marker of RGC injury, and provide a starting point for the development of more specific neuroprotective DLK inhibitors for the treatment of glaucoma, nonglaucomatous forms of optic neuropathy, and perhaps other CNS neurodegenerations.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Xiaoban Xin; Murilo Rodrigues; Mahaa Umapathi; Fabiana Kashiwabuchi; Tao Ma; Savalan Babapoor-Farrokhran; Shuang Wang; Jiadi Hu; Imran Bhutto; Derek S. Welsbie; Elia J. Duh; James T. Handa; Charles G. Eberhart; Gerard A. Lutty; Gregg L. Semenza; Silvia Montaner; Akrit Sodhi
Significance Ischemic retinopathies include a diverse group of diseases in which immature retinal vasculature or damage to mature retinal vessels leads to retinal ischemia. The anticipated rise in the worldwide prevalence of diabetes will result in a concurrent increase in the number of patients with vision impairment from diabetic eye disease, the most common cause of ischemic retinopathy. We set out to identify novel hypoxia-inducible genes that promote vascular permeability and may therefore play a role in the pathogenesis of diabetic eye disease. We demonstrate that angiopoietin-like 4 (ANGPTL4) is up-regulated by the transcriptional enhancer, hypoxia-inducible factor-1 in hypoxic retinal Müller cells, and can promote vascular permeability. Our findings suggest that ANGPTL4 may be a potential therapeutic target for ischemic retinopathies. Vision loss from ischemic retinopathies commonly results from the accumulation of fluid in the inner retina [macular edema (ME)]. Although the precise events that lead to the development of ME remain under debate, growing evidence supports a role for an ischemia-induced hyperpermeability state regulated, in part, by VEGF. Monthly treatment with anti-VEGF therapies is effective for the treatment of ME but results in a major improvement in vision in a minority of patients, underscoring the need to identify additional therapeutic targets. Using the oxygen-induced retinopathy mouse model for ischemic retinopathy, we provide evidence showing that hypoxic Müller cells promote vascular permeability by stabilizing hypoxia-inducible factor-1α (HIF-1α) and secreting angiogenic cytokines. Blocking HIF-1α translation with digoxin inhibits the promotion of endothelial cell permeability in vitro and retinal edema in vivo. Interestingly, Müller cells require HIF—but not VEGF—to promote vascular permeability, suggesting that other HIF-dependent factors may contribute to the development of ME. Using gene expression analysis, we identify angiopoietin-like 4 (ANGPTL4) as a cytokine up-regulated by HIF-1 in hypoxic Müller cells in vitro and the ischemic inner retina in vivo. ANGPTL4 is critical and sufficient to promote vessel permeability by hypoxic Müller cells. Immunohistochemical analysis of retinal tissue from patients with diabetic eye disease shows that HIF-1α and ANGPTL4 localize to ischemic Müller cells. Our results suggest that ANGPTL4 may play an important role in promoting vessel permeability in ischemic retinopathies and could be an important target for the treatment of ME.
Neuron | 2017
Derek S. Welsbie; Katherine L. Mitchell; Vinod Jaskula-Ranga; Valentin M. Sluch; Zhiyong Yang; Jessica Kim; Eugen Buehler; Amit Patel; Scott E. Martin; Ping Wu Zhang; Yan Ge; Yukan Duan; John L. Fuller; Byung Jin Kim; Eman Hamed; Xitiz Chamling; Lei Lei; Iain D. C. Fraser; Ze'ev Ronai; Cynthia Berlinicke; Donald J. Zack
Dual leucine zipper kinase (DLK) has been implicated in cell death signaling secondary to axonal damage in retinal ganglion cells (RGCs) and other neurons. To better understand the pathway through which DLK acts, we developed enhanced functional genomic screens in primary RGCs, including use of arrayed, whole-genome, small interfering RNA libraries. Explaining why DLK inhibition is only partially protective, we identify leucine zipper kinase (LZK) as cooperating with DLK to activate downstream signaling and cell death in RGCs, including in a mouse model of optic nerve injury, and show that the same pathway is active in human stem cell-derived RGCs. Moreover, we identify four transcription factors, JUN, activating transcription factor 2 (ATF2), myocyte-specific enhancer factor 2A (MEF2A), and SRY-Box 11 (SOX11), as being the major downstream mediators through which DLK/LZK activation leads to RGC cell death. Increased understanding of the DLK pathway has implications for understanding and treating neurodegenerative diseases.
PLOS ONE | 2015
Harry A. Quigley; Ian Pitha; Derek S. Welsbie; Cathy Nguyen; Matthew R. Steinhart; Thao D. Nguyen; Mary E. Pease; Ericka Oglesby; Cynthia Berlinicke; Katherine L. Mitchell; Jessica Kim; Joan J. Jefferys; Elizabeth C. Kimball
Purpose To determine if oral losartan treatment decreases the retinal ganglion cell (RGC) death caused by experimental intraocular pressure (IOP) elevation in mice. Methods We produced IOP increase in CD1 mice and performed unilateral optic nerve crush. Mice received oral losartan, spironolactone, enalapril, or no drug to test effects of inhibiting angiotensin receptors. IOP was monitored by Tonolab, and blood pressure was monitored by tail cuff device. RGC loss was measured in masked axon counts and RGC bodies by β-tubulin labeling. Scleral changes that could modulate RGC injury were measured including axial length, scleral thickness, and retinal layer thicknesses, pressure-strain behavior in inflation testing, and study of angiotensin receptors and pathways by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry. Results Losartan treatment prevented significant RGC loss (median loss = 2.5%, p = 0.13), while median loss with water, spironolactone, and enalapril treatments were 26%, 28% and 43%; p < 0.0001). The lower RGC loss with losartan was significantly less than the loss with spironolactone or enalapril (regression model p = 0.001; drug treatment group term p = 0.01). Both losartan and enalapril significantly lowered blood pressure (p< 0.001), but losartan was protective, while enalapril led to worse than water-treated RGC loss. RGC loss after crush injury was unaffected by losartan treatment (difference from control p = 0.9). Survival of RGC in cell culture was not prolonged by sartan treatment. Axonal transport blockade after 3 day IOP elevations was less in losartan-treated than in control glaucoma eyes (p = 0.007). Losartan inhibited effects of glaucoma, including reduction in extracellular signal-related kinase activity and modification of glaucoma-related changes in scleral thickness and creep under controlled IOP. Conclusions The neuroprotective effect of losartan in mouse glaucoma is associated with adaptive changes in the sclera expressed at the optic nerve head.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Yanhong Wei; Junsong Gong; Zhenhua Xu; Rajesh K. Thimmulappa; Katherine L. Mitchell; Derek S. Welsbie; Shyam Biswal; Elia J. Duh
Significance Delayed revascularization of ischemic neural tissue is a major impediment to preservation of function in central nervous system (CNS) diseases including stroke and ischemic retinopathies. The key mechanisms governing vascular recovery in ischemic CNS, including regulatory molecules governing transition from tissue injury to repair, are largely unknown. We report here on NF-E2-related factor 2 (Nrf2), a major stress-response transcription factor known for its cell-intrinsic cytoprotective function, in a novel capacity coordinating tissue repair and remodeling, including regulation of cell–cell crosstalk. Nrf2 activity in ischemic neurons reduces their resistance to reparative angiogenesis by suppressing expression of neuronal semaphorin 6A (Sema6A) and its antiangiogenic effects. Pharmacologic activation of Nrf2 or inhibition of Sema6A promote reparative angiogenesis in this ischemic setting, suggesting therapeutic avenues for ischemic retinopathies and other ischemic diseases. Delayed revascularization of ischemic neural tissue is a major impediment to preservation of function in central nervous system (CNS) diseases including stroke and ischemic retinopathies. Therapeutic strategies allowing rapid revascularization are greatly needed to reduce ischemia-induced cellular damage and suppress harmful pathologic neovascularization. However, key mechanisms governing vascular recovery in ischemic CNS, including regulatory molecules governing the transition from tissue injury to tissue repair, are largely unknown. NF-E2-related factor 2 (Nrf2) is a major stress-response transcription factor well known for its cell-intrinsic cytoprotective function. However, its role in cell–cell crosstalk is less appreciated. Here we report that Nrf2 is highly activated in ischemic retina and promotes revascularization by modulating neurons in their paracrine regulation of endothelial cells. Global Nrf2 deficiency strongly suppresses retinal revascularization and increases pathologic neovascularization in a mouse model of ischemic retinopathy. Conditional knockout studies demonstrate a major role for neuronal Nrf2 in vascular regrowth into avascular retina. Deletion of neuronal Nrf2 results in semaphorin 6A (Sema6A) induction in hypoxic/ischemic retinal ganglion cells in a hypoxia-inducible factor-1 alpha (HIF-1α)-dependent fashion. Sema6A expression increases in avascular inner retina and colocalizes with Nrf2 in human fetal eyes. Extracellular Sema6A leads to dose-dependent suppression of the migratory phenotype of endothelial cells through activation of Notch signaling. Lentiviral-mediated delivery of Sema6A small hairpin RNA (shRNA) abrogates the defective retinal revascularization in Nrf2-deficient mice. Importantly, pharmacologic Nrf2 activation promotes reparative angiogenesis and suppresses pathologic neovascularization. Our findings reveal a unique function of Nrf2 in reprogramming ischemic tissue toward neurovascular repair via Sema6A regulation, providing a potential therapeutic strategy for ischemic retinal and CNS diseases.