Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek Toomre is active.

Publication


Featured researches published by Derek Toomre.


Nature Reviews Molecular Cell Biology | 2000

Lipid rafts and signal transduction.

Kai Simons; Derek Toomre

Signal transduction is initiated by complex protein–protein interactions between ligands, receptors and kinases, to name only a few. It is now becoming clear that lipid micro-environments on the cell surface — known as lipid rafts — also take part in this process. Lipid rafts containing a given set of proteins can change their size and composition in response to intra- or extracellular stimuli. This favours specific protein–protein interactions, resulting in the activation of signalling cascades.


Nature | 2002

Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane.

Amy Chow; Derek Toomre; Wendy S. Garrett; Ira Mellman

Central to the initiation of immune responses is recognition of peptide antigen by T lymphocytes. The cell biology of dendritic cells makes them ideally suited for the essential process of antigen presentation. Their life cycle includes several stages characterized by distinct functions and mechanisms of regulation. Immature dendritic cells synthesize large amounts of major histocompatibility complex class II molecules (MHC II), but the αβ-dimers are targeted to late endosomes and lysosomes (often referred to as MHC class II compartments) where they reside unproductively with internalized antigens. After exposure to microbial products or inflammatory mediators, endocytosis is downregulated, the expression of co-stimulatory molecules is enhanced, and newly formed immunogenic MHC II–peptide complexes are transported to the cell surface. That these MHC II molecules reach the surface is surprising, as the lysosomes comprise the terminal degradative compartment of the endocytic pathway from which exogenous components generally cannot be recovered intact. Here we have visualized this pathway in live dendritic cells by video microscopy, using cells expressing MHC II tagged with green fluorescent protein (GFP). We show that on stimulation, dendritic cells generate tubules from lysosomal compartments that go on to fuse directly with the plasma membrane.


Nature | 2010

Spatial control of EGF receptor activation by reversible dimerization on living cells

Inhee Chung; Robert W. Akita; Richard Vandlen; Derek Toomre; Joseph Schlessinger; Ira Mellman

Epidermal growth factor receptor (EGFR) is a type I receptor tyrosine kinase, the deregulation of which has been implicated in a variety of human carcinomas. EGFR signalling is preceded by receptor dimerization, typically thought to result from a ligand-induced conformational change in the ectodomain that exposes a loop (dimerization arm) required for receptor association. Ligand binding may also trigger allosteric changes in the cytoplasmic domain of the receptor that is crucial for signalling. Despite these insights, ensemble-averaging approaches have not determined the precise mechanism of receptor activation in situ. Using quantum-dot-based optical tracking of single molecules combined with a novel time-dependent diffusivity analysis, here we present the dimerization dynamics of individual EGFRs on living cells. Before ligand addition, EGFRs spontaneously formed finite-lifetime dimers kinetically stabilized by their dimerization arms. The dimers were primed both for ligand binding and for signalling, such that after EGF addition they rapidly showed a very slow diffusivity state that correlated with activation. Although the kinetic stability of unliganded dimers was in principle sufficient for EGF-independent activation, ligand binding was still required for signalling. Interestingly, dimers were enriched in the cell periphery in an actin- and receptor-expression-dependent fashion, resulting in a peripheral enhancement of EGF-induced signalling that may enable polarized responses to growth factors.


Nature Cell Biology | 2006

Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains

Jaime Millán; Lindsay Hewlett; Matthew C. P. Glyn; Derek Toomre; Peter Clark; Anne J. Ridley

During inflammation, leukocytes bind to the adhesion receptors ICAM-1 and VCAM-1 on the endothelial surface before undergoing transendothelial migration, also called diapedesis. ICAM-1 is also involved in transendothelial migration, independently of its role in adhesion, but the molecular basis of this function is poorly understood. Here we demonstrate that, following clustering, apical ICAM-1 translocated to caveolin-rich membrane domains close to the ends of actin stress fibres. In these F-actin-rich areas, ICAM-1 was internalized and transcytosed to the basal plasma membrane through caveolae. Human T-lymphocytes extended pseudopodia into endothelial cells in caveolin- and F-actin-enriched areas, induced local translocation of ICAM-1 and caveolin-1 to the endothelial basal membrane and transmigrated through transcellular passages formed by a ring of F-actin and caveolae. Reduction of caveolin-1 levels using RNA interference (RNAi) specifically decreased lymphocyte transcellular transmigration. We propose that the translocation of ICAM-1 to caveola- and F-actin-rich domains links the sequential steps of lymphocyte adhesion and transendothelial migration and facilitates lymphocyte migration through endothelial cells from capillaries into surrounding tissue.


Nature Cell Biology | 2006

The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor

Takahiro Murata; Anna M. Delprato; Alyssa Ingmundson; Derek Toomre; David G. Lambright; Craig R. Roy

The intracellular pathogen Legionella pneumophila avoids fusion with lysosomes and subverts membrane transport from the endoplasmic reticulum to create an organelle that supports bacterial replication. Transport of endoplasmic reticulum-derived vesicles to the Legionella-containing vacuole (LCV) requires bacterial proteins that are translocated into host cells by a type IV secretion apparatus called Dot/Icm. Recent observations have revealed recruitment of the host GTPase Rab1 to the LCV by a process requiring the Dot/Icm system. Here, a visual screen was used to identify L. pneumophila mutants with defects in Rab1 recruitment. One of the factors identified in this screen was DrrA, a new Dot/Icm substrate protein translocated into host cells. We show that DrrA is a potent and highly specific Rab1 guanine nucleotide-exchange factor (GEF). DrrA can disrupt Rab1-mediated secretory transport to the Golgi apparatus by competing with endogenous exchange factors to recruit and activate Rab1 on plasma membrane-derived organelles. These data establish that intracellular pathogens have the capacity to directly modulate the activation state of a specific member of the Rab family of GTPases and thus further our understanding of the mechanisms used by bacterial pathogens to manipulate host vesicular transport.


Annual Review of Cell and Developmental Biology | 2010

A New Wave of Cellular Imaging

Derek Toomre; Joerg Bewersdorf

Fluorescence imaging methods that push or break the diffraction limit of resolution (approximately 200 nm) have grown explosively. These super-resolution nanoscopy techniques include: stimulated emission depletion (STED), Pointillism microscopy [(fluorescence) photoactivation localization microscopy/stochastic optical reconstruction microscopy, or (F)PALM/STORM], structured illumination, total internal reflection fluorescence microscopy (TIRFM), and those that combine multiple modalities. Each affords unique strengths in lateral and axial resolution, speed, sensitivity, and fluorophore compatibility. We examine the optical principles and design of these new instruments and their ability to see more detail with greater sensitivity--down to single molecules with tens of nanometers resolution. Nanoscopes have revealed transient intermediate states of organelles and molecules in living cells and have led to new discoveries but also biological controversies. We highlight common unifying principles behind nanoscopy such as the conversion of a subset of probes between states (ground or excited) and the use of scanning (ordered or stochastic). We emphasize major advances, biological applications, and promising new developments.


Cell | 2009

A Phosphoinositide Switch Controls the Maturation and Signaling Properties of APPL Endosomes

Roberto Zoncu; Rushika M. Perera; Daniel M. Balkin; Michelle Pirruccello; Derek Toomre; Pietro De Camilli

The recent identification of several novel endocytic compartments has challenged our current understanding of the topological and functional organization of the endocytic pathway. Using quantitative single vesicle imaging and acute manipulation of phosphoinositides we show that APPL endosomes, which participate in growth factor receptor trafficking and signaling, represent an early endocytic intermediate common to a subset of clathrin derived endocytic vesicles and macropinosomes. Most APPL endosomes are precursors of classical PI3P positive endosomes, and PI3P plays a critical role in promoting this conversion. Depletion of PI3P causes a striking reversion of Rab5 positive endosomes to the APPL stage, and results in enhanced growth factor signaling. These findings reveal a surprising plasticity of the early endocytic pathway. Importantly, PI3P functions as a switch to dynamically regulate maturation and signaling of APPL endosomes.


Journal of Cell Biology | 2008

Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis

Vincent Idone; Christina Tam; John W. Goss; Derek Toomre; Marc Pypaert; Norma W. Andrews

Ca2+ influx through plasma membrane lesions triggers a rapid repair process that was previously shown to require the exocytosis of lysosomal organelles (Reddy, A., E. Caler, and N. Andrews. 2001. Cell. 106:157–169). However, how exocytosis leads to membrane resealing has remained obscure, particularly for stable lesions caused by pore-forming proteins. In this study, we show that Ca2+-dependent resealing after permeabilization with the bacterial toxin streptolysin O (SLO) requires endocytosis via a novel pathway that removes SLO-containing pores from the plasma membrane. We also find that endocytosis is similarly required to repair lesions formed in mechanically wounded cells. Inhibition of lesion endocytosis (by sterol depletion) inhibits repair, whereas enhancement of endocytosis through disruption of the actin cytoskeleton facilitates resealing. Thus, endocytosis promotes wound resealing by removing lesions from the plasma membrane. These findings provide an important new insight into how cells protect themselves not only from mechanical injury but also from microbial toxins and pore-forming proteins produced by the immune system.


Trends in Cell Biology | 2001

Lighting up the cell surface with evanescent wave microscopy

Derek Toomre; Dietmar J. Manstein

Evanescent wave microscopy, also termed total internal reflection fluorescence microscopy (TIR-FM), has shed new light on important cellular processes taking place near the plasma membrane. For example, this technique can enable the direct observation of membrane fusion of synaptic vesicles and the movement of single molecules during signal transduction. There has been a recent surge in the popularity of this technique with the advent of green-fluorescent protein (GFP) as a fluorescent marker and new technical developments. These technical developments and some of the latest applications of TIR-FM are the subject of this review.


Nature Methods | 2013

Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms

Fang Huang; Tobias M. P. Hartwich; Felix Rivera-Molina; Yu Lin; Whitney C. Duim; Jane J. Long; Pradeep D. Uchil; Jordan R. Myers; Michelle A. Baird; Walther Mothes; Michael W. Davidson; Derek Toomre; Joerg Bewersdorf

Newly developed scientific complementary metal-oxide semiconductor (sCMOS) cameras have the potential to dramatically accelerate data acquisition, enlarge the field of view and increase the effective quantum efficiency in single-molecule switching nanoscopy. However, sCMOS-intrinsic pixel-dependent readout noise substantially lowers the localization precision and introduces localization artifacts. We present algorithms that overcome these limitations and that provide unbiased, precise localization of single molecules at the theoretical limit. Using these in combination with a multi-emitter fitting algorithm, we demonstrate single-molecule localization super-resolution imaging at rates of up to 32 reconstructed images per second in fixed and living cells.

Collaboration


Dive into the Derek Toomre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge