Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek W. Morris is active.

Publication


Featured researches published by Derek W. Morris.


Nature | 2009

Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

Shaun Purcell; Naomi R. Wray; Jennifer Stone; Peter M. Visscher; Michael Conlon O'Donovan; Patrick F. Sullivan; Pamela Sklar; Douglas M. Ruderfer; Andrew McQuillin; Derek W. Morris; Colm O’Dushlaine; Aiden Corvin; Peter Holmans; Michael C. O’Donovan; Stuart MacGregor; Hugh Gurling; Douglas Blackwood; Nicholas John Craddock; Michael Gill; Christina M. Hultman; George Kirov; Paul Lichtenstein; Walter J. Muir; Michael John Owen; Carlos N. Pato; Edward M. Scolnick; David St Clair; Nigel Melville Williams; Lyudmila Georgieva; Ivan Nikolov

Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%. We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.


Nature | 2008

Rare chromosomal deletions and duplications increase risk of schizophrenia

Jennifer Stone; Michael C. O’Donovan; Hugh Gurling; George Kirov; Douglas Blackwood; Aiden Corvin; Nicholas John Craddock; Michael Gill; Christina M. Hultman; Paul Lichtenstein; Andrew McQuillin; Carlos N. Pato; Douglas M. Ruderfer; Michael John Owen; David St Clair; Patrick F. Sullivan; Pamela Sklar; Shaun Purcell; Joshua M. Korn; Stuart Macgregor; Derek W. Morris; Colm O’Dushlaine; Mark J. Daly; Peter M. Visscher; Peter Holmans; Edward M. Scolnick; Nigel Melville Williams; Lucy Georgieva; Ivan Nikolov; Nadine Norton

Schizophrenia is a severe mental disorder marked by hallucinations, delusions, cognitive deficits and apathy, with a heritability estimated at 73–90% (ref. 1). Inheritance patterns are complex, and the number and type of genetic variants involved are not understood. Copy number variants (CNVs) have been identified in individual patients with schizophrenia and also in neurodevelopmental disorders, but large-scale genome-wide surveys have not been performed. Here we report a genome-wide survey of rare CNVs in 3,391 patients with schizophrenia and 3,181 ancestrally matched controls, using high-density microarrays. For CNVs that were observed in less than 1% of the sample and were more than 100 kilobases in length, the total burden is increased 1.15-fold in patients with schizophrenia in comparison with controls. This effect was more pronounced for rarer, single-occurrence CNVs and for those that involved genes as opposed to those that did not. As expected, deletions were found within the region critical for velo-cardio-facial syndrome, which includes psychotic symptoms in 30% of patients. Associations with schizophrenia were also found for large deletions on chromosome 15q13.3 and 1q21.1. These associations have not previously been reported, and they remained significant after genome-wide correction. Our results provide strong support for a model of schizophrenia pathogenesis that includes the effects of multiple rare structural variants, both genome-wide and at specific loci.


Nature Genetics | 2008

Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder

Manuel A. Ferreira; Michael Conlon O'Donovan; Ian Richard Jones; Douglas M. Ruderfer; Lisa Jones; Jinbo Fan; George Kirov; Roy H. Perlis; Elaine K. Green; Jordan W. Smoller; Detelina Grozeva; Jennifer Stone; Ivan Nikolov; Marian Lindsay Hamshere; Vishwajit L. Nimgaonkar; Valentina Moskvina; Michael E. Thase; Sian Caesar; Gary S. Sachs; Jennifer Franklin; Katherine Gordon-Smith; Kristin Ardlie; Stacey Gabriel; Christine Fraser; Brendan Blumenstiel; Matthew DeFelice; Gerome Breen; Michael Gill; Derek W. Morris; Amanda Elkin

To identify susceptibility loci for bipolar disorder, we tested 1.8 million variants in 4,387 cases and 6,209 controls and identified a region of strong association (rs10994336, P = 9.1 × 10−9) in ANK3 (ankyrin G). We also found further support for the previously reported CACNA1C (alpha 1C subunit of the L-type voltage-gated calcium channel; combined P = 7.0 × 10−8, rs1006737). Our results suggest that ion channelopathies may be involved in the pathogenesis of bipolar disorder.


Nature Genetics | 2008

Identification of loci associated with schizophrenia by genome-wide association and follow-up

Michael Conlon O'Donovan; Nicholas John Craddock; Nadine Norton; Hywel Williams; T. Peirce; Valentina Escott-Price; Ivan Nikolov; Marian Lindsay Hamshere; Liam Stuart Carroll; Lyudmila Georgieva; Sarah Dwyer; Peter Holmans; Jonathan Marchini; Chris C. A. Spencer; Bryan Howie; Hin-Tak Leung; Annette M. Hartmann; Hans-Jürgen Möller; Derek W. Morris; Yongyong Shi; Guoyin Feng; Per Hoffmann; Peter Propping; Catalina Vasilescu; Wolfgang Maier; Marcella Rietschel; Stanley Zammit; Johannes Schumacher; Emma M. Quinn; Thomas G. Schulze

We carried out a genome-wide association study of schizophrenia (479 cases, 2,937 controls) and tested loci with P < 10−5 in up to 16,726 additional subjects. Of 12 loci followed up, 3 had strong independent support (P < 5 × 10−4), and the overall pattern of replication was unlikely to occur by chance (P = 9 × 10−8). Meta-analysis provided strongest evidence for association around ZNF804A (P = 1.61 × 10−7) and this strengthened when the affected phenotype included bipolar disorder (P = 9.96 × 10−9).


Astrophysical Journal Supplement Series | 1993

Instrument description and performance of the Imaging Gamma-Ray Telescope COMPTEL aboard the Compton Gamma-Ray Observatory

V. Schoenfelder; H. Aarts; K. Bennett; de H. Boer; J. Clear; W. Collmar; Alanna Connors; A. Deerenberg; R. Diehl; von A. Dordrecht; den J.W. Herder; W. Hermsen; Marc Kippen; L. Kuiper; Giselher G. Lichti; J. A. Lockwood; John R. Macri; Mark L. McConnell; Derek W. Morris; Rudolf Paul Much; J. Ryan; G. Simpson; M. Snelling; G. Stacy; H. Steinle; A. W. Strong; B. N. Swanenburg; B. G. Taylor; de C.P. Vries; C. Winkler

The imaging Compton telescope COMPTEL is one of the four instruments on board the Compton Gamma-Ray Observatory (GRO), which was launched on 1991 April 5 by the space shuttle Atlantis into an Earth orbit of 450 km altitude. COMPTEL is exploring the 1-30 MeV energy range with an angular resolution (1σ) between 1° and 2° within a large field of view of about 1 steradian. Its energy resolution (8.8% FWHM at 1.27 MeV) makes it a powerful gamma-ray line spectrometer. Its effective area (for on-axis incidence) varies between 10 and 50 cm 2 depending on energy and event selections. Within a 14 day observation period COMPTEL is able to detect sources which are about 20 times weaker than the Crab. The measurement principle of COMPTEL also allows the measurements of solar neutrons


Nature | 2011

Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia

Vladimir Vacic; Shane McCarthy; Dheeraj Malhotra; Fiona Murray; Hsun Hua Chou; Aine Peoples; Vladimir Makarov; Seungtai Yoon; Abhishek Bhandari; Roser Corominas; Lilia M. Iakoucheva; Olga Krastoshevsky; Verena Krause; Verãnica Larach-Walters; David K. Welsh; David Craig; John R. Kelsoe; Elliot S. Gershon; Suzanne M. Leal; Marie Dell Aquila; Derek W. Morris; Michael Gill; Aiden Corvin; Paul A. Insel; Jon McClellan; Mary Claire King; Maria Karayiorgou; Deborah L. Levy; Lynn E. DeLisi; Jonathan Sebat

Rare copy number variants (CNVs) have a prominent role in the aetiology of schizophrenia and other neuropsychiatric disorders. Substantial risk for schizophrenia is conferred by large (>500-kilobase) CNVs at several loci, including microdeletions at 1q21.1 (ref. 2), 3q29 (ref. 3), 15q13.3 (ref. 2) and 22q11.2 (ref. 4) and microduplication at 16p11.2 (ref. 5). However, these CNVs collectively account for a small fraction (2–4%) of cases, and the relevant genes and neurobiological mechanisms are not well understood. Here we performed a large two-stage genome-wide scan of rare CNVs and report the significant association of copy number gains at chromosome 7q36.3 with schizophrenia. Microduplications with variable breakpoints occurred within a 362-kilobase region and were detected in 29 of 8,290 (0.35%) patients versus 2 of 7,431 (0.03%) controls in the combined sample. All duplications overlapped or were located within 89 kilobases upstream of the vasoactive intestinal peptide receptor gene VIPR2. VIPR2 transcription and cyclic-AMP signalling were significantly increased in cultured lymphocytes from patients with microduplications of 7q36.3. These findings implicate altered vasoactive intestinal peptide signalling in the pathogenesis of schizophrenia and indicate the VPAC2 receptor as a potential target for the development of new antipsychotic drugs.


Molecular Psychiatry | 2011

Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder

Hywel Williams; Nadine Norton; Sarah Dwyer; Valentina Moskvina; Ivan Nikolov; Liam Stuart Carroll; Lyudmila Georgieva; Nigel Melville Williams; Derek W. Morris; Emma M. Quinn; Ina Giegling; Masashi Ikeda; Joel Wood; Todd Lencz; Christina M. Hultman; Paul Lichtenstein; Brion S. Maher; Anil K. Malhotra; Brien P. Riley; Kenneth S. Kendler; Michael Gill; Patrick F. Sullivan; Pamela Sklar; Shaun Purcell; Vishwajit L. Nimgaonkar; George Kirov; Peter Holmans; Aiden Corvin; Dan Rujescu; Nicholas John Craddock

A recent genome-wide association study (GWAS) reported evidence for association between rs1344706 within ZNF804A (encoding zinc-finger protein 804A) and schizophrenia (P=1.61 × 10−7), and stronger evidence when the phenotype was broadened to include bipolar disorder (P=9.96 × 10−9). In this study we provide additional evidence for association through meta-analysis of a larger data set (schizophrenia/schizoaffective disorder N=18 945, schizophrenia plus bipolar disorder N=21 274 and controls N=38 675). We also sought to better localize the association signal using a combination of de novo polymorphism discovery in exons, pooled de novo polymorphism discovery spanning the genomic sequence of the locus and high-density linkage disequilibrium (LD) mapping. The meta-analysis provided evidence for association between rs1344706 that surpasses widely accepted benchmarks of significance by several orders of magnitude for both schizophrenia (P=2.5 × 10−11, odds ratio (OR) 1.10, 95% confidence interval 1.07–1.14) and schizophrenia and bipolar disorder combined (P=4.1 × 10−13, OR 1.11, 95% confidence interval 1.07–1.14). After de novo polymorphism discovery and detailed association analysis, rs1344706 remained the most strongly associated marker in the gene. The allelic association at the ZNF804A locus is now one of the most compelling in schizophrenia to date, and supports the accumulating data suggesting overlapping genetic risk between schizophrenia and bipolar disorder.


Molecular Psychiatry | 2016

Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium

T G M van Erp; Derrek P. Hibar; Jerod Rasmussen; David C. Glahn; Godfrey D. Pearlson; Ole A. Andreassen; Ingrid Agartz; Lars T. Westlye; Unn K. Haukvik; Anders M. Dale; Ingrid Melle; Cecilie B. Hartberg; Oliver Gruber; Bernd Kraemer; David Zilles; Gary Donohoe; Sinead Kelly; Colm McDonald; Derek W. Morris; Dara M. Cannon; Aiden Corvin; Marise W J Machielsen; Laura Koenders; L. de Haan; Dick J. Veltman; Theodore D. Satterthwaite; Daniel H. Wolf; R.C. Gur; Raquel E. Gur; Steve Potkin

The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen’s d=−0.46), amygdala (d=−0.31), thalamus (d=−0.31), accumbens (d=−0.25) and intracranial volumes (d=−0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness.


Molecular Psychiatry | 2014

De novo Mutations in Schizophrenia Implicate Chromatin Remodeling and Support a Genetic Overlap with Autism and Intellectual Disability

Shane McCarthy; Jesse Gillis; Melissa Kramer; J Lihm; Seungtai Yoon; Y Berstein; Meeta Mistry; Paul Pavlidis; R Solomon; Elena Ghiban; E Antoniou; Eric Kelleher; C. O'Brien; Gary Donohoe; Michael Gill; Derek W. Morris; W. R. McCombie; Aiden Corvin

Schizophrenia is a serious psychiatric disorder with a broadly undiscovered genetic etiology. Recent studies of de novo mutations (DNMs) in schizophrenia and autism have reinforced the hypothesis that rare genetic variation contributes to risk. We carried out exome sequencing on 57 trios with sporadic or familial schizophrenia. In sporadic trios, we observed a ~3.5-fold increase in the proportion of nonsense DNMs (0.101 vs 0.031, empirical P=0.01, Benjamini–Hochberg-corrected P=0.044). These mutations were significantly more likely to occur in genes with highly ranked probabilities of haploinsufficiency (P=0.0029, corrected P=0.006). DNMs of potential functional consequence were also found to occur in genes predicted to be less tolerant to rare variation (P=2.01 × 10−5, corrected P=2.1 × 10−3). Genes with DNMs overlapped with genes implicated in autism (for example, AUTS2, CHD8 and MECP2) and intellectual disability (for example, HUWE1 and TRAPPC9), supporting a shared genetic etiology between these disorders. Functionally CHD8, MECP2 and HUWE1 converge on epigenetic regulation of transcription suggesting that this may be an important risk mechanism. Our results were consistent in an analysis of additional exome-based sequencing studies of other neurodevelopmental disorders. These findings suggest that perturbations in genes, which function in the epigenetic regulation of brain development and cognition, could have a central role in the susceptibility to, pathogenesis and treatment of mental disorders.


Molecular Psychiatry | 2011

Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility.

Colm O'Dushlaine; Elaine Kenny; Elizabeth A. Heron; Gary Donohoe; Michael Gill; Derek W. Morris; Aiden Corvin

Susceptibility to schizophrenia and bipolar disorder may involve a substantial, shared contribution from thousands of common genetic variants, each of small effect. Identifying whether risk variants map to specific molecular pathways is potentially biologically informative. We report a molecular pathway analysis using the single-nucleotide polymorphism (SNP) ratio test, which compares the ratio of nominally significant (P<0.05) to nonsignificant SNPs in a given pathway to identify the ‘enrichment’ for association signals. We applied this approach to the discovery (the International Schizophrenia Consortium (n=6909)) and validation (Genetic Association Information Network (n=2729)) of schizophrenia genome-wide association study (GWAS) data sets. We investigated each of the 212 experimentally validated pathways described in the Kyoto Encyclopaedia of Genes and Genomes in the discovery sample. Nominally significant pathways were tested in the validation sample, and five pathways were found to be significant (P=0.03–0.001); only the cell adhesion molecule (CAM) pathway withstood conservative correction for multiple testing. Interestingly, this pathway was also significantly associated with bipolar disorder (Wellcome Trust Case Control Consortium (n=4847)) (P=0.01). At a gene level, CAM genes associated in all three samples (NRXN1 and CNTNAP2), which were previously implicated in specific language disorder, autism and schizophrenia. The CAM pathway functions in neuronal cell adhesion, which is critical for synaptic formation and normal cell signaling. Similar pathways have also emerged from a pathway analysis of autism, suggesting that mechanisms involved in neuronal cell adhesion may contribute broadly to neurodevelopmental psychiatric phenotypes.

Collaboration


Dive into the Derek W. Morris's collaboration.

Top Co-Authors

Avatar

Gary Donohoe

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

John L. Waddington

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Hermsen

National Institute for Space Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Bennett

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

V. Schonfelder

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge