Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Derek W. Wood is active.

Publication


Featured researches published by Derek W. Wood.


Molecular Plant-microbe Interactions | 1998

Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere

Elizabeth A. Pierson; Derek W. Wood; Jeffrey A. Cannon; Francoise M. Blachere; Leland S. Pierson

The biological control bacterium Pseudomonas aureofaciens 30-84 utilizes an N-acyl-homoserine lactone (AHL) signal molecule to control phenazine antibiotic production in the wheat rhizosphere (D. W. Wood and L. S. Pierson III, Gene 168:49-53, 1996). In this study, we demonstrate that naturally co-existing, non-isogenic bacterial populations interact with strain 30-84 at the level of gene expression via the exchange of diffusible signals on wheat roots. Wheat plants from three geographic locations were used to generate a random library of 700 rhizobacterial isolates. Roughly 8% of the isolates from each location restored phenazine gene expression to an AHL-deficient strain of 30-84 in vitro. Five of these isolates were further tested for their ability to influence gene expression of an AHL-deficient reporter of strain 30-84 on wheat roots. All five, isolated from different geographic locations, restored phenazine gene expression by the reporter to wild-type levels. This suggests that in vitro assays can id...


Journal of Bacteriology | 2009

Genome Sequences of Three Agrobacterium Biovars Help Elucidate the Evolution of Multichromosome Genomes in Bacteria

Steven C. Slater; Barry S. Goldman; Brad Goodner; João C. Setubal; Stephen K. Farrand; Eugene W. Nester; Thomas J. Burr; Lois M. Banta; Allan W. Dickerman; Ian T. Paulsen; L. Otten; Garret Suen; Roy D. Welch; Nalvo F. Almeida; Frank Arnold; Oliver T. Burton; Zijin Du; Adam D. Ewing; Eric Godsy; Sara E. Heisel; Kathryn L. Houmiel; Jinal Jhaveri; Jing Lu; Nancy M. Miller; Stacie Norton; Qiang Chen; Waranyoo Phoolcharoen; Victoria Ohlin; Dan Ondrusek; Nicole Pride

The family Rhizobiaceae contains plant-associated bacteria with critical roles in ecology and agriculture. Within this family, many Rhizobium and Sinorhizobium strains are nitrogen-fixing plant mutualists, while many strains designated as Agrobacterium are plant pathogens. These contrasting lifestyles are primarily dependent on the transmissible plasmids each strain harbors. Members of the Rhizobiaceae also have diverse genome architectures that include single chromosomes, multiple chromosomes, and plasmids of various sizes. Agrobacterium strains have been divided into three biovars, based on physiological and biochemical properties. The genome of a biovar I strain, A. tumefaciens C58, has been previously sequenced. In this study, the genomes of the biovar II strain A. radiobacter K84, a commercially available biological control strain that inhibits certain pathogenic agrobacteria, and the biovar III strain A. vitis S4, a narrow-host-range strain that infects grapes and invokes a hypersensitive response on nonhost plants, were fully sequenced and annotated. Comparison with other sequenced members of the Alphaproteobacteria provides new data on the evolution of multipartite bacterial genomes. Primary chromosomes show extensive conservation of both gene content and order. In contrast, secondary chromosomes share smaller percentages of genes, and conserved gene order is restricted to short blocks. We propose that secondary chromosomes originated from an ancestral plasmid to which genes have been transferred from a progenitor primary chromosome. Similar patterns are observed in select Beta- and Gammaproteobacteria species. Together, these results define the evolution of chromosome architecture and gene content among the Rhizobiaceae and support a generalized mechanism for second-chromosome formation among bacteria.


Journal of Bacteriology | 2009

Genome Sequence of Azotobacter vinelandii, an Obligate Aerobe Specialized To Support Diverse Anaerobic Metabolic Processes

João C. Setubal; Patricia C. Dos Santos; Barry S. Goldman; Helga Ertesvåg; Guadelupe Espin; Luis M. Rubio; Svein Valla; Nalvo F. Almeida; Divya Balasubramanian; Lindsey Cromes; Leonardo Curatti; Zijin Du; Eric Godsy; Brad Goodner; Kaitlyn Hellner-Burris; Jose A. Hernandez; Katherine Houmiel; Juan Imperial; Christina Kennedy; Timothy J. Larson; Phil Latreille; Lauren S. Ligon; Jing Lu; Mali Mærk; Nancy M. Miller; Stacie Norton; Ina P. O'Carroll; Ian T. Paulsen; Estella C. Raulfs; Rebecca Roemer

Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins.


Gene | 1996

The phzI gene of Pseudomonas aureofaciens 30–84 is responsible for the production of a diffusible signal required for phenazine antibiotic production

Derek W. Wood; Leland S. Pierson

The production of phenazine (Ph) antibiotics in Pseudomonas aureofaciens (Pau) 30-84 is positively regulated by PhzR, a protein belonging to the LuxR family of transcriptional activators. We have now identified phzI, a second gene required for PH production. The product of phzI is a member of the LuxI family of N-acyl-homoserine lactone (N-acyl-HSL) synthases. Inactivation of phzI results in the loss of Ph production in Pau 30-84. The presence of phzI in Escherichia coli is sufficient for the production of a diffusible signal which activates phzB expression in Pau 30-84 and traA expression in a N-acyl-HSL-dependent reporter strain of Agrobacterium tumefaciens. In addition, synthetic N-(3-oxohexanoyl)-L-HSL induces phzB expression in Pau 30-84. These results suggest that Pau 30-84 produces a N-acyl-HSL signal that regulates Ph production, and that phzI plays a central role in this signaling pathway.


Molecular Plant-microbe Interactions | 2004

The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli.

Claudia B. Monteiro-Vitorello; Luis Eduardo Aranha Camargo; Marie A. Van Sluys; João Paulo Kitajima; Daniela Truffi; Ricardo Harakava; Julio Cezar Franco de Oliveira; Derek W. Wood; Mariana C. Oliveira; Cristina Y. Miyaki; Marco A. Takita; Ana C. R. da Silva; Luis Roberto Furlan; Dirce Maria Carraro; Giovana Camarotte; Nalvo F. Almeida; Helaine Carrer; Luiz Lehmann Coutinho; Maria Inês Tiraboschi Ferro; Paulo R. Gagliardi; Éder A. Giglioti; Maria Helena S. Goldman; Gustavo H. Goldman; Edna T. Kimura; Emer S. Ferro; Eiko E. Kuramae; Eliana Gertrudes de Macedo Lemos; Manoel Victor Franco Lemos; Sônia Marli Zingaretti Di Mauro; Marcos Antonio Machado

The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.


Applied and Environmental Microbiology | 2002

Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30-84 in the wheat rhizosphere

Scott T. Chancey; Derek W. Wood; Elizabeth A. Pierson; Leland S. Pierson

ABSTRACT GacS/GacA comprises a two-component regulatory system that controls the expression of secondary metabolites required for the control of plant diseases in many pseudomonads. High mutation frequencies of gacS and gacA have been observed in liquid culture. We examined whether gacS/gacA mutants could competitively displace the wild-type populations on roots and thus pose a threat to the efficacy of biological control. The survival of a gac mutant alone and in competition with the wild type on roots was examined in the biological control strain Pseudomonas aureofaciens 30-84. In this bacterium, GacS/GacA controls the expression of phenazine antibiotics that are inhibitory to plant pathogenic fungi and enhance the competitive survival of the bacterium. Wheat seedlings were inoculated with strain 30-84, and bacteria were recovered from roots after 21 days in sterile or nonsterile soil to check for the presence of gacS or gacA mutants. Although no mutants were detected in the inoculum, gacS/gacA mutants were recovered from 29 out of 31 roots and comprised up to 36% of the total bacterial populations. Southern hybridization analysis of the recovered gacA mutants did not indicate a conserved mutational mechanism. Replacement series analysis on roots utilizing strain 30-84 and a gacA mutant (30-84.gacA) or a gacS mutant (30-84.A2) demonstrated that although the mutant population partially displaced the wild type in sterile soil, it did not do so in natural soil. In fact, in natural soil final rhizosphere populations of wild-type strain 30-84 starting from mixtures were at least 1.5 times larger than would be predicted from their inoculation ratio and generally were greater than or equal to the population of wild type alone despite lower inoculation rates. These results indicate that although gacS/gacA mutants survive in natural rhizosphere populations, they do not displace wild-type populations. Better survival of wild-type populations in mixtures with mutants suggests that mutants arising de novo or introduced within the inoculum may be beneficial for the survival of wild-type populations in the rhizosphere.


Journal of Bacteriology | 2002

A New Type IV Secretion System Promotes Conjugal Transfer in Agrobacterium tumefaciens

Lishan Chen; Yuching Chen; Derek W. Wood; Eugene W. Nester

Two DNA transfer systems encoded by the tumor-inducing (Ti) plasmid have been previously identified in Agrobacterium tumefaciens. The virB operon is required for the transfer of transferred DNA to the plant host, and the trb system encodes functions required for the conjugal transfer of the Ti plasmid between cells of Agrobacterium. Recent availability of the genome sequence of Agrobacterium allowed us to identify a third system that is most similar to the VirB type IV secretion system of Bartonella henselae. We have designated this system avhB for Agrobacterium virulence homologue virB. The avhB loci reside on pAtC58 and encode at least 10 proteins (AvhB2 through AvhB11), 7 of which display significant similarity to the corresponding virulence-associated VirB proteins of the Ti plasmid. However, the AvhB system is not required for tumor formation; rather, it mediates the conjugal transfer of the pAtC58 cryptic plasmid between cells of Agrobacterium. This transfer occurs in the absence of the Ti plasmid-encoded VirB and Trb systems. Like the VirB system, AvhB products promote the conjugal transfer of the IncQ plasmid RSF1010, suggesting that these products comprise a mating-pair formation system. The presence of plasmid TiC58 or plasmid RSF1010 reduces the conjugal transfer efficiency of pAtC58 10- or 1,000-fold, respectively. These data suggest that complex substrate interactions exist among the three DNA transfer systems of Agrobacterium.


European Journal of Plant Pathology | 1998

N-acyl-homoserine lactone-mediated gene regulation in biological control by fluorescent pseudomonads: Current knowledge and future work

Leland S. Pierson; Derek W. Wood; Elizabeth A. Pierson; Scott T. Chancey

An emerging area within biological control is the role of N-acyl-homoserine lactones (N-acyl-HSLs) in the regulation of competitive fitness and pathogen suppression. N-acyl-HSL regulatory systems utilize two conserved proteins which belong to the LuxR/LuxI regulatory family: one is a transcriptional regulator and the second produces the N-acyl-HSL signal. These signals regulate the expression of a diverse range of bacterial traits involved in microbe-microbe and host-microbe interactions. Several fluorescent pseudomonads important in biological control produce N-acyl-HSL signals which regulate genes that encode products involved in pathogen suppression. In contrast to pathogenic bacteria, little is known regarding N-acyl-HSL-mediated gene regulation in biological control bacteria. This minireview will focus on the current status of the role of N-acyl-HSLs in the regulation of phenazine antibiotic and rhamnolipid production in biological control by fluorescent pseudomonads. The potential relevance of this type of regulation in biological control of plant diseases, and areas requiring further research will be addressed.


Journal of Bacteriology | 2005

Phosphoenolpyruvate Carboxykinase Is an Acid-Induced, Chromosomally Encoded Virulence Factor in Agrobacterium tumefaciens

Pu Liu; Derek W. Wood; Eugene W. Nester

The pckA gene, encoding phosphoenolpyruvate carboxykinase, catalyzes the reversible decarboxylation and phosphorylation of oxaloacetate to form phosphoenolpyruvate. Located on the circular chromosome of Agrobacterium, this locus is adjacent to the loci chvG and chvI, encoding a two-component regulatory system that has been shown to be important in virulence. Using a reporter gene fusion, studies showed that the pckA gene is induced by acidic pH but not by acetosyringone. This acid induction is regulated by the chvG-chvI regulatory system, which controls acid-inducible genes. A pckA mutant had no demonstrable PckA enzyme activity and grew on AB minimal medium with glucose but did not grow on the same medium with succinate as the sole carbon source and was more inhibited in its growth than the wild-type strain by an acidic environment. A pckA mutant was highly attenuated in tumor-inducing ability on tobacco leaf disks and was severely attenuated in vir gene expression. Although vir gene induction was completely restored when a constitutive virG gene was introduced into the mutant strain, virulence was only partially restored. These results suggest that avirulence may be due to a combination of the inhibition of this mutant in the acidic plant wound environment and the poor induction of the vir genes.


Applied and Environmental Microbiology | 2013

Reconciliation of Sequence Data and Updated Annotation of the Genome of Agrobacterium tumefaciens C58, and Distribution of a Linear Chromosome in the Genus Agrobacterium

Steven C. Slater; João C. Setubal; Brad Goodner; Kathryn L. Houmiel; Jian Sun; Rajinder Kaul; Barry S. Goldman; Stephen K. Farrand; Nalvo F. Almeida; Thomas J. Burr; Eugene W. Nester; David M. Rhoads; Ryosuke Kadoi; Trucian A. Ostheimer; Nicole Pride; Allison Sabo; Erin Henry; Erin Telepak; Lindsey Cromes; Alana Harkleroad; Louis Oliphant; Phil Pratt-Szegila; Roy D. Welch; Derek W. Wood

ABSTRACT Two groups independently sequenced the Agrobacterium tumefaciens C58 genome in 2001. We report here consolidation of these sequences, updated annotation, and additional analysis of the evolutionary history of the linear chromosome, which is apparently limited to the biovar I group of Agrobacterium.

Collaboration


Dive into the Derek W. Wood's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nalvo F. Almeida

Federal University of Mato Grosso do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven C. Slater

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lishan Chen

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge