Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dermot F. McGinnity is active.

Publication


Featured researches published by Dermot F. McGinnity.


Drug Metabolism and Disposition | 2005

A unified model for predicting human hepatic, metabolic clearance from in vitro intrinsic clearance data in hepatocytes and microsomes

Robert John Riley; Dermot F. McGinnity; Rupert P. Austin

The aim of this study was to evaluate a unified method for predicting human in vivo intrinsic clearance (CLint, in vivo) and hepatic clearance (CLh) from in vitro data in hepatocytes and microsomes by applying the unbound fraction in blood (fub) and in vitro incubations (fuinc). Human CLint, in vivo was projected using in vitro data together with biological scaling factors and compared with the unbound intrinsic clearance (CLint, ub, in vivo) estimated from clinical data using liver models with and without the various fu terms. For incubations conducted with fetal calf serum (n = 14), the observed CLint, in vivo was modeled well assuming fuinc and fub were equivalent. CLint, ub, in vivo was predicted best using both fub and fuinc for other hepatocyte data (n = 56; r2 = 0.78, p = 3.3 × 10–19, average fold error = 5.2). A similar model for CLint, ub, in vivo was established for microsomal data (n = 37; r2 = 0.77, p = 1.2 × 10–12, average fold error = 6.1). Using the model for CLint, ub, in vivo (including a further empirical scaling factor), the CLh in humans was also calculated according to the well stirred liver model for the most extensive dataset. CLint, in vivo and CLh were both predicted well using in vitro human data from several laboratories for acidic, basic, and neutral drugs. The direct use of this model using only in vitro human data to predict the metabolic component of CLh is attractive, as it does not require extra information from preclinical studies in animals.


Drug Metabolism and Disposition | 2004

EVALUATION OF FRESH AND CRYOPRESERVED HEPATOCYTES AS IN VITRO DRUG METABOLISM TOOLS FOR THE PREDICTION OF METABOLIC CLEARANCE

Dermot F. McGinnity; Matthew G. Soars; Richard A. Urbanowicz; Robert J. Riley

The intrinsic clearances (CLint) of 50 neutral and basic marketed drugs were determined in fresh human hepatocytes and the data used to predict human in vivo hepatic metabolic clearance (CLmet). A statistically significant correlation between scaled CLmet and actual CLmet was observed (r2 = 0.48, p < 0.05), and for 73% of the drugs studied, scaled clearances were within 2-fold of the actual clearance. These data have shown that CLint data generated in human hepatocytes can be used to provide estimates of human hepatic CLmet for both phase I and phase II processes. In addition, the utility of commercial and in-house cryopreserved hepatocytes was assessed by comparing with data derived from fresh cells. A set of 14 drugs metabolized by the major human cytochromes P450 (P450s) (CYP1A2, 2C9, 2C19, 2D6, and 3A4) and uridine diphosphate glucuronosyltransferases (UGT1A1, 1A4, 1A9, and 2B7) have been used to characterize the activity of freshly isolated and cryopreserved human and dog hepatocytes. The cryopreserved human and dog cells retained on average 94% and 81%, respectively, of the CLint determined in fresh cells. Cryopreserved hepatocytes retain their full activity for more than 1 year in liquid N2 and are thus a flexible resource of hepatocytes for in vitro assays. In summary, this laboratory has successfully cryopreserved human and dog hepatocytes as assessed by the turnover of prototypic P450 and UGT substrates, and both fresh and cryopreserved human hepatocytes may be used for the prediction of human hepatic CLmet.


Xenobiotica | 1999

Fully automated analysis of activities catalysed by the major human liver cytochrome P450 (CYP) enzymes: assessment of human CYP inhibition potential

Moody Gc; Griffin Sj; Mather An; Dermot F. McGinnity; Robert J. Riley

1. Fully automated inhibition screens for the major human hepatic cytochrome P450s have been developed and validated. Probe assays were the fluorometric-based ethoxyresorufin O-deethylation for CYP1A2 and radiometric analysis of erythromycin N-demethylation for CYP3A4, dextromethorphan O-demethylation for CYP2D6, naproxen O-demethylation for CYP2C9 and diazepam N-demethylation for CYP2C19. For the radiometric assays > 99.7% of 14C-labelled substrate was routinely extracted from incubations by solid-phase extraction. 2. Furafylline, sulphaphenazole, omeprazole, quinidine and ketoconazole were identified as specific markers for the respective CYP1A2 (IC50 = 6 microM), CYP2C9 (0.7 microM), CYP2C19 (6 microM), CYP2D6 (0.02 microM) and CYP3A4 (0.2 microM) inhibition screens. 3. For the radiometric methods, a two-point IC50 estimate was validated by correlating the IC50 obtained with a full (seven-point) assay (r2 = 0.98, p < 0.001). The two-point IC50 estimate is useful for initial screening, while the full IC50 method provides more definitive quantitation, where required. 4. IC50 determined for a series of test compounds in human liver microsomes and cytochrome P450 cDNA-expressed enzymes were similar (r2 = 0.89, p < 0.001). In particular, the CYP1A2, CYP2D6 and CYP3A4 screens demonstrated the flexibility to accept either enzyme source. As a result of incomplete substrate selectivity, expressed enzymes were utilized for analysis of CYP2C9 and CYP2C19 inhibition. Good agreement was demonstrated between IC50 determined in these assays to IC50 published by other laboratories using a wide range of analytical techniques, which provided confidence in the universality of these inhibition screens. 5. These automated screens for initial assessment of P450 inhibition potential allow rapid determination of IC50. The radiometric assays are flexible, sensitive, robust and free from analytical interference, and they should permit the identification and eradication of inhibitory structural motifs within a series of potential drug candidates.


Drug Metabolism and Disposition | 2006

EVALUATION OF TIME-DEPENDENT CYTOCHROME P450 INHIBITION USING CULTURED HUMAN HEPATOCYTES

Dermot F. McGinnity; Amanda J. Berry; Jane R. Kenny; Ken Grime; Robert J. Riley

Primary human hepatocytes in culture are commonly used to evaluate cytochrome P450 (P450) induction via an enzyme activity endpoint. However, other processes can confound data interpretation. To this end, the impact of time-dependent P450 inhibition in this system was evaluated. Using a substrate-cassette approach, P450 activities were determined after incubation with the prototypic inhibitors tienilic acid (CYP2C9), erythromycin, troleandomycin, and fluoxetine (CYP3A4). Kinetic analysis of enzyme inactivation in hepatocytes was used to describe the effect of these time-dependent inhibitors and derive the inhibition parameters kinact and KI, which generally were in good agreement with the values derived using recombinant P450s and human liver microsomes (HLMs). Tienilic acid selectively inhibited CYP2C9-dependent diclofenac 4′-hydroxylation activity, and erythromycin, troleandomycin, and fluoxetine inhibited CYP3A4-dependent midazolam 1′-hydroxylation in a time- and concentration-dependent manner. Fluoxetine also inhibited CYP2C19-dependent S-mephenytoin 4′-hydroxylation in a time- and concentration-dependent manner in hepatocytes, HLMs, and recombinant CYP2C19 (KI 0.4 μM and kinact 0.5 min–1). As expected, the effect of fluoxetine on CYP2D6 in hepatocytes was consistent with potent yet reversible inhibition. A very weak time-dependent CYP2C9 inhibitor (AZ1, a proprietary AstraZeneca compound; KI 30 μM and kinact 0.02 min–1) effectively abolished CYP2C9 activity over 24 h at low (micromolar) concentrations in primary cultured human hepatocytes. This work demonstrates that caution is warranted in the interpretation of enzyme induction studies with metabolically stable, weak time-dependent inhibitors, which may have dramatic inhibitory effects on P450 activity in this system. Therefore, in addition to enzyme activity, mRNA and/or protein levels should be measured to fully evaluate the P450 induction potential of a drug candidate.


Drug Metabolism and Disposition | 2009

Evaluation of multiple in vitro systems for assessment of CYP3A4 induction in drug discovery: human hepatocytes, pregnane X receptor reporter gene, and Fa2N-4 and HepaRG cells.

Dermot F. McGinnity; George Zhang; Jane R. Kenny; Geraldine A. Hamilton; Sara Otmani; Karen R. Stams; Suzzette Haney; Patrick Brassil; David M. Stresser; Robert J. Riley

Prototypic CYP3A4 inducers were tested in a pregnane X receptor (PXR) reporter gene assay, Fa2N-4 cells, HepaRG cells, and primary human hepatocytes, along with negative controls, using CYP3A4 mRNA and activity endpoints, where appropriate. Over half of the compounds tested (14 of 24) were identified as time-dependent inhibitors of CYP3A4 and high mRNA/activity ratios (>10) were consistent with CYP3A4 time-dependent inhibition for compounds such as troleandomycin, ritonavir, and verapamil. Induction response was compared between two human donors; there was an excellent correlation in the EC50 estimates (r2 = 0.89, p < 0.001), and a weak but statistically significant correlation was noted for maximum observed induction at an optimum concentration (Emax) (r2 = 0.38, p = 0.001). Emax and EC50 estimates determined from the PXR reporter gene assay and Fa2N-4 and HepaRG cells were compared with those from hepatocytes. Overall, EC50 values generated using hepatocytes agreed with those generated in the PXR reporter gene assay (r2 = 0.85, p < 0.001) and Fa2N-4 (r2 = 0.65, p < 0.001) and HepaRG (r2 = 0.99, p < 0.001) cells. However, Emax values generated in hepatocytes were only significantly correlated to those determined in Fa2N-4 (r2 = 0.33, p = 0.005) and HepaRG cells (r2 = 0.79, p < 0.001). “Gold standard” cytochrome P450 induction data can be generated using primary human hepatocytes, but a restricted, erratic supply and interdonor variability somewhat restrict routine application within a drug discovery setting. HepaRG cells are a valuable recent addition to the armory of in vitro tools for assessing CYP3A4 induction and seem to be an excellent surrogate of primary cells.


Drug Metabolism and Disposition | 2005

Prediction of CYP2C9 mediated drug-drug interactions: a comparison using data from recombinant enzymes and human hepatocytes

Dermot F. McGinnity; James Tucker; Steve Trigg; Robert J. Riley

The IC50 values of 14 drugs were determined in recombinantly expressed CYP2C9 (rCYP2C9) and human hepatocytes and the data used to simulate clinical area under the plasma concentration-time curve (AUC) changes upon coadministration with prototypic CYP2C9 substrates. There was an excellent correlation between IC50, apparent values determined using diclofenac and naproxen as CYP2C9 substrates (r2 = 0.82, p < 0.0001), with values being generally higher in the naproxen assay. After correcting for nonspecific binding, the IC50, unbound values were similar between the assays, for the majority of compounds. Two compounds, amiodarone and benzbromarone, demonstrated substrate-specific differences, activating naproxen O-demethylase to ∼250% of control activity at 1 mM and 1 μM, respectively, while inhibiting diclofenac 4′-hydroxylation with IC50, apparent values of 3 μM and 0.04 μM, respectively. CYP2C9 IC50, apparent values generated in human hepatocytes were systematically higher than those determined with rCYP2C9. After correcting for nonspecific binding, there was an excellent correlation of IC50, unbound values generated in the different milieu (r2 = 0.88, p < 0.0001). The ratio of inhibitor concentration at the entrance to the liver to the inhibition constant ([I]in/Ki) was used to simulate clinical δAUC changes and compared with that observed in vivo. Where [I]in, total/Ki, apparent was used, there were zero false negatives (observed δAUC ≥2, predicted δAUC <2), eight correct assignations, and seven false positives (observed δAUC ≤2, predicted δAUC >2. Where [I]in, unbound/Ki, unbound was used, there was one false negative, 14 correct assignations, and zero false positives. In summary, the data presented here suggest that for CYP2C9 interactions, the use of total liver inhibitor concentrations may indeed avoid false negatives, but more realistic predictions may be achieved using unbound liver inhibitor concentrations and unbound in vitro inhibition parameters.


Drug Metabolism and Disposition | 2011

Prediction of Human Renal Clearance from Preclinical Species for a Diverse Set of Drugs That Exhibit Both Active Secretion and Net Reabsorption

Stuart W. Paine; Karelle Ménochet; Rebecca Denton; Dermot F. McGinnity; Robert J. Riley

Identifying any extrahepatic excretion phenomenon in preclinical species is crucial for an accurate prediction of the pharmacokinetics in man. This understanding is particularly key for drugs with a small volume of distribution, because they require an especially low total clearance to be suitable for a once-a-day dosing regimen in man. In this study, three animal scaling techniques were applied for the prediction of the human renal clearance of 36 diverse drugs that show active secretion or net reabsorption: 1) direct correlations between renal clearance in man and each of the two main preclinical species (rat and dog); 2) simple allometry; and 3) Mahmoods renal clearance scaling method. The results show clearly that the predictions to man for the methods are improved significantly when corrections are made for species differences in plasma protein binding. Overall, the most accurate predictions were obtained by using a direct correlation with the dog renal clearance after correcting for differences in plasma protein binding and kidney blood flow (r2 = 0.84), where predictions, on average, were within 2-fold of the observed renal clearance values in human.


Drug Metabolism and Disposition | 2008

Integrated in Vitro Analysis for the in Vivo Prediction of Cytochrome P450-Mediated Drug-Drug Interactions

Dermot F. McGinnity; Nigel J. Waters; James Tucker; Robert J. Riley

Unbound IC50 (IC50,u) values of 15 drugs were determined in eight recombinantly expressed human cytochromes P450 (P450s) and human hepatocytes, and the data were used to simulate clinical area under the plasma concentration-time curve changes (δAUC) on coadministration with prototypic CYP2D6 substrates. Significant differences in IC50,u values between enzyme sources were observed for quinidine (0.02 μM in recombinant CYP2D6 versus 0.5 μM in hepatocytes) and propafenone (0.02 versus 4.1 μM). The relative contribution of individual P450s toward the oxidative metabolism of clinical probes desipramine, imipramine, tolterodine, propranolol, and metoprolol was estimated via determinations of intrinsic clearance using recombinant P450s (rP450s). Simulated δAUC were compared with those observed in vivo via the ratios of unbound inhibitor concentration at the entrance to the liver to inhibition constants determined against rP450s ([I]in,u/Ki) and incorporating parallel substrate elimination pathways. For this dataset, there were 20% false negatives (observed δAUC ≥ 2, predicted δAUC < 2), 77% correct predictions, and 3% false positives. Thus, the [I]in,u/Ki approach appears relatively successful at estimating the degree of clinical interactions and can be incorporated into drug discovery strategies. Using a Simcyp ADME (absorption, metabolism, distribution, elimination) simulator (Simcyp Ltd., Sheffield, UK), there were 3% false negatives, 94% correct simulations, and 3% false positives. False-negative predictions were rationalized as a result of mechanism-based inhibition, production of inhibitory metabolites, and/or hepatic uptake. Integrating inhibition and reaction phenotyping data from automated rP450 screens have shown applicability to predict the occurrence and degree of in vivo drug-drug interactions, and such data may identify the clinical consequences for candidate drugs as both “perpetrators” and “victims” of P450-mediated interactions.


Xenobiotica | 2008

Efficient assessment of the utility of immortalized Fa2N-4 cells for cytochrome P450 (CYP) induction studies using multiplex quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and substrate cassette methodologies

J. R. Kenny; L. Chen; Dermot F. McGinnity; Ken Grime; Kevin M. Shakesheff; Brian J. Thomson; Robert J. Riley

Induction of cytochrome P450 (CYP) 1A2, CYP2B6, and CYP3A4 by 22 prototypical inducers was evaluated in the Fa2N-4 immortalized human hepatic cell line. To facilitate this a duplex one-step quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) assay for CYP1A2 and CYP3A4 and a substrate cassette allowing simultaneous monitoring of CYP1A2, CYP2B6, CYP2C9, and CYP3A4 activity were developed. CYP1A2 messenger RNA (mRNA) and activity were induced by the prototypical aryl hydrocarbon receptor (AhR) ligand β-naphthoflavone (Emax = 217- and 11-fold, respectively, and EC50 = 8 µM). CYP3A4 mRNA and activity were induced by the prototypical pregnane X receptor (PXR) ligands, rifampicin (Emax = 36- and 6-fold, respectively, and EC50 = 4 µM) and phenobarbital (Emax = 12- and 4-fold, respectively, and EC50 = 205 µM). No induction of CYP2B6 was detected with several prototypical constitutive androstane receptor (CAR) ligands. A large mRNA–activity Emax ratio was observed for some time-dependent inhibitors of CYP3A4, whereas EC50 determinations appeared to be independent of the endpoint. In conclusion, Fa2N-4 cells are a good surrogate for primary human hepatocytes for assessing AhR and PXR-mediated CYP1A2 and CYP3A4 induction, respectively, but not for CAR-mediated CYP2B6 induction. The sensitive and selective methodologies presented in this paper afford maximal data generation and enhanced throughput capability and are readily transferable to primary human hepatocytes or alternate cellular systems.


ACS Medicinal Chemistry Letters | 2017

Discovery of AZD-2098 and AZD-1678, Two Potent and Bioavailable CCR4 Receptor Antagonists

Nicholas Kindon; Glen Andrews; Andrew Douglas Baxter; David Cheshire; Paul Hemsley; Timothy Johnson; Yu-Zhen Liu; Dermot F. McGinnity; Mark McHale; Antonio Mete; James Reuberson; Bryan Roberts; John Steele; Barry Teobald; John Unitt; Deborah Vaughan; Iain Walters; Michael J. Stocks

N-(5-Bromo-3-methoxypyrazin-2-yl)-5-chlorothiophene-2-sulfonamide 1 was identified as a hit in a CCR4 receptor antagonist high-throughput screen (HTS) of a subset of the AstraZeneca compound bank. As a hit with a lead-like profile, it was an excellent starting point for a CCR4 receptor antagonist program and enabled the rapid progression through the Lead Identification and Lead Optimization phases resulting in the discovery of two bioavailable CCR4 receptor antagonist candidate drugs.

Collaboration


Dive into the Dermot F. McGinnity's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ken Grime

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge