Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dermot P. McGovern is active.

Publication


Featured researches published by Dermot P. McGovern.


Nature | 2016

Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek; Konrad J. Karczewski; Eric Vallabh Minikel; Kaitlin E. Samocha; Eric Banks; Timothy Fennell; Anne H. O’Donnell-Luria; James S. Ware; Andrew Hill; Beryl B. Cummings; Taru Tukiainen; Daniel P. Birnbaum; Jack A. Kosmicki; Laramie Duncan; Karol Estrada; Fengmei Zhao; James Zou; Emma Pierce-Hoffman; Joanne Berghout; David Neil Cooper; Nicole Deflaux; Mark A. DePristo; Ron Do; Jason Flannick; Menachem Fromer; Laura Gauthier; Jackie Goldstein; Namrata Gupta; Daniel P. Howrigan; Adam Kiezun

Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human ‘knockout’ variants in protein-coding genes.


Cell | 2015

Disease-Specific Alterations in the Enteric Virome in Inflammatory Bowel Disease

Jason M. Norman; Scott A. Handley; Megan T. Baldridge; Lindsay Droit; Catherine Y. Liu; Brian C. Keller; Amal Kambal; Cynthia L. Monaco; Guoyan Zhao; Phillip Fleshner; Thaddeus S. Stappenbeck; Dermot P. McGovern; Ali Keshavarzian; Ece Mutlu; Jenny Sauk; Dirk Gevers; Ramnik J. Xavier; David Wang; Miles Parkes; Herbert W. Virgin

Decreases in the diversity of enteric bacterial populations are observed in patients with Crohns disease (CD) and ulcerative colitis (UC). Less is known about the virome in these diseases. We show that the enteric virome is abnormal in CD and UC patients. In-depth analysis of preparations enriched for free virions in the intestine revealed that CD and UC were associated with a significant expansion of Caudovirales bacteriophages. The viromes of CD and UC patients were disease and cohort specific. Importantly, it did not appear that expansion and diversification of the enteric virome was secondary to changes in bacterial populations. These data support a model in which changes in the virome may contribute to intestinal inflammation and bacterial dysbiosis. We conclude that the virome is a candidate for contributing to, or being a biomarker for, human inflammatory bowel disease and speculate that the enteric virome may play a role in other diseases.


The Lancet | 2016

Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study

Isabelle Cleynen; Gabrielle Boucher; Luke Jostins; L. Philip Schumm; Sebastian Zeissig; Tariq Ahmad; Vibeke Andersen; Jane M. Andrews; Vito Annese; Stephan Brand; Steven R. Brant; Judy H. Cho; Mark J. Daly; Marla Dubinsky; Richard H. Duerr; Lynnette R. Ferguson; Andre Franke; Richard B. Gearry; Philippe Goyette; Hakon Hakonarson; Jonas Halfvarson; Johannes R. Hov; Hailang Huang; Nicholas A. Kennedy; Ian C. Lawrance; James C. Lee; Jack Satsangi; Stephan Schreiber; Emilie Théâtre; Andrea E. van der Meulen-de Jong

Summary Background Crohns disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohns disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases. Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34 819 patients (19 713 with Crohns disease, 14 683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype–phenotype associations across 156 154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohns disease, ileal Crohns disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile. Findings After quality control, the primary analysis included 29 838 patients (16 902 with Crohns disease, 12 597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for inflammatory bowel disease showed strong association with disease subphenotype (p=1·65 × 10−78), even after exclusion of NOD2, MHC, and 3p21 (p=9·23 × 10−18). Predictive models based on the genetic risk score strongly distinguished colonic from ileal Crohns disease. Our genetic risk score could also identify a small number of patients with discrepant genetic risk profiles who were significantly more likely to have a revised diagnosis after follow-up (p=6·8 × 10−4). Interpretation Our data support a continuum of disorders within inflammatory bowel disease, much better explained by three groups (ileal Crohns disease, colonic Crohns disease, and ulcerative colitis) than by Crohns disease and ulcerative colitis as currently defined. Disease location is an intrinsic aspect of a patients disease, in part genetically determined, and the major driver to changes in disease behaviour over time. Funding International Inflammatory Bowel Disease Genetics Consortium members funding sources (see Acknowledgments for full list).


Alimentary Pharmacology & Therapeutics | 2001

The genetics of inflammatory bowel disease

Tariq Ahmad; Jack Satsangi; Dermot P. McGovern; Michael Bunce; Derek P. Jewell

Recent epidemiological, clinical and molecular studies have provided strong evidence that inherited predisposition is important in the pathogenesis of chronic inflammatory bowel diseases. The model most consistent with the epidemiological data suggests that Crohn’s disease and ulcerative colitis are related polygenic diseases, sharing some but not all susceptibility genes. Investigators throughout the world have applied the complementary techniques of genome‐wide scanning and candidate gene analysis. Four areas of linkage have been widely replicated on chromosomes 16 (IBD1), 12 (IBD2), 6 (IBD3—the HLA region), and most recently on chromosome 14. Fine mapping of these regions is underway. Of the ‘positional’ candidate genes, most attention has centred on the genes of the major histocompatibility complex. Genes within this region may determine disease susceptibility, behaviour, complications and response to therapy. Hope continues that studies of inflammatory bowel disease genetics will provide fresh insight into disease pathogenesis and soon deliver clinical applications.


Science | 2016

Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease.

Hiutung Chu; Arya Khosravi; Indah P. Kusumawardhani; Alice H. K. Kwon; Anilton C. Vasconcelos; Larissa D. Cunha; Anne E. Mayer; Yue Shen; Wei-Li Wu; Amal Kambal; Stephan R. Targan; Ramnik J. Xavier; Peter B. Ernst; Douglas R. Green; Dermot P. McGovern; Herbert W. Virgin; Sarkis K. Mazmanian

Genes and microbes converge in colitis Both host genetics and intestinal microbes probably contribute to a persons overall susceptibility to inflammatory bowel disease (IBD). The human gut microbe Bacteroides fragilis produces immunomodulatory molecules that it releases via outer membrane vesicles (OMVs). These molecules can protect mice from experimentally induced colitis. Chu et al. now find that OMV-mediated protection from colitis requires Atg16l1 and Nod2 genes whose human orthologs are associated with an increased risk for developing IBD. OMVs trigger an ATG16L1 and NOD2–dependent noncanonical autophagy pathway in dendritic cells (DCs). OMV-primed DCs, in turn, induce regulatory T cells in the intestine that protect against colitis. Science, this issue p. 1116 A human gut microbe uses Crohn’s disease–associated genes to promote immune tolerance in the intestine. Inflammatory bowel disease (IBD) is associated with risk variants in the human genome and dysbiosis of the gut microbiome, though unifying principles for these findings remain largely undescribed. The human commensal Bacteroides fragilis delivers immunomodulatory molecules to immune cells via secretion of outer membrane vesicles (OMVs). We reveal that OMVs require IBD-associated genes, ATG16L1 and NOD2, to activate a noncanonical autophagy pathway during protection from colitis. ATG16L1-deficient dendritic cells do not induce regulatory T cells (Tregs) to suppress mucosal inflammation. Immune cells from human subjects with a major risk variant in ATG16L1 are defective in Treg responses to OMVs. We propose that polymorphisms in susceptibility genes promote disease through defects in “sensing” protective signals from the microbiome, defining a potentially critical gene-environment etiology for IBD.


Nature Genetics | 2014

A common missense variant in NUDT15 confers susceptibility to thiopurine-induced leukopenia

Suk-Kyun Yang; Myunghee Hong; Jiwon Baek; Hyunchul Choi; Wanting Zhao; Yusun Jung; Talin Haritunians; Byong Duk Ye; Kyung-Jo Kim; Sang Hyoung Park; Soo-Kyung Park; Dong-Hoon Yang; Marla Dubinsky; Inchul Lee; Dermot P. McGovern; Jianjun Liu; Kyuyoung Song

Thiopurine therapy, commonly used in autoimmune conditions, can be complicated by life-threatening leukopenia. This leukopenia is associated with genetic variation in TPMT (encoding thiopurine S-methyltransferase). Despite a lower frequency of TPMT mutations in Asians, the incidence of thiopurine-induced leukopenia is higher in Asians than in individuals of European descent. Here we performed an Immunochip-based 2-stage association study in 978 Korean subjects with Crohns disease treated with thiopurines. We identified a nonsynonymous SNP in NUDT15 (encoding p.Arg139Cys) that was strongly associated with thiopurine-induced early leukopenia (odds ratio (OR) = 35.6; Pcombined = 4.88 × 10−94). In Koreans, this variant demonstrated sensitivity and specificity of 89.4% and 93.2%, respectively, for thiopurine-induced early leukopenia (in comparison to 12.1% and 97.6% for TPMT variants). Although rare, this SNP was also strongly associated with thiopurine-induced leukopenia in subjects with inflammatory bowel disease of European descent (OR = 9.50; P = 4.64 × 10−4). Thus, NUDT15 is a pharmacogenetic determinant for thiopurine-induced leukopenia in diverse populations.


Gastroenterology | 2015

Genetics of Inflammatory Bowel Diseases

Dermot P. McGovern; S Kugathasan; Judy H. Cho

In this review, we provide an update on genome-wide association studies (GWAS) in inflammatory bowel disease (IBD). In addition, we summarize progress in defining the functional consequences of associated alleles for coding and noncoding genetic variation. In the small minority of loci where major association signals correspond to nonsynonymous variation, we summarize studies defining their functional effects and implications for therapeutic targeting. Importantly, the large majority of GWAS-associated loci involve noncoding variation, many of which modulate levels of gene expression. Recent expression quantitative trait loci (eQTL) studies have established that the expression of most human genes is regulated by noncoding genetic variations. Significant advances in defining the epigenetic landscape have demonstrated that IBD GWAS signals are highly enriched within cell-specific active enhancer marks. Studies in European ancestry populations have dominated the landscape of IBD genetics studies, but increasingly, studies in Asian and African-American populations are being reported. Common variation accounts for only a modest fraction of the predicted heritability and the role of rare genetic variation of higher effects (ie, odds ratios markedly deviating from 1) is increasingly being identified through sequencing efforts. These sequencing studies have been particularly productive in more severe very early onset cases. A major challenge in IBD genetics will be harnessing the vast array of genetic discovery for clinical utility through emerging precision medical initiatives. In this article, we discuss the rapidly evolving area of direct-to-consumer genetic testing and the current utility of clinical exome sequencing, especially in very early onset, severe IBD cases. We summarize recent progress in the pharmacogenetics of IBD with respect to partitioning patient responses to anti-TNF and thiopurine therapies. Highly collaborative studies across research centers and across subspecialties and disciplines will be required to fully realize the promise of genetic discovery in IBD.


Mbio | 2013

Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships

Ian McHardy; Maryam Goudarzi; Maomeng Tong; Paul Ruegger; Emma Schwager; John R. Weger; Thomas G. Graeber; Justin L. Sonnenburg; Steve Horvath; Curtis Huttenhower; Dermot P. McGovern; Albert J. Fornace; James Borneman; Jonathan Braun

BackgroundConsistent compositional shifts in the gut microbiota are observed in IBD and other chronic intestinal disorders and may contribute to pathogenesis. The identities of microbial biomolecular mechanisms and metabolic products responsible for disease phenotypes remain to be determined, as do the means by which such microbial functions may be therapeutically modified.ResultsThe composition of the microbiota and metabolites in gut microbiome samples in 47 subjects were determined. Samples were obtained by endoscopic mucosal lavage from the cecum and sigmoid colon regions, and each sample was sequenced using the 16S rRNA gene V4 region (Illumina-HiSeq 2000 platform) and assessed by UPLC mass spectroscopy. Spearman correlations were used to identify widespread, statistically significant microbial-metabolite relationships. Metagenomes for identified microbial OTUs were imputed using PICRUSt, and KEGG metabolic pathway modules for imputed genes were assigned using HUMAnN. The resulting metabolic pathway abundances were mostly concordant with metabolite data. Analysis of the metabolome-driven distribution of OTU phylogeny and function revealed clusters of clades that were both metabolically and metagenomically similar.ConclusionsThe results suggest that microbes are syntropic with mucosal metabolome composition and therefore may be the source of and/or dependent upon gut epithelial metabolites. The consistent relationship between inferred metagenomic function and assayed metabolites suggests that metagenomic composition is predictive to a reasonable degree of microbial community metabolite pools. The finding that certain metabolites strongly correlate with microbial community structure raises the possibility of targeting metabolites for monitoring and/or therapeutically manipulating microbial community function in IBD and other chronic diseases.


Nature Genetics | 2015

High density mapping of the MHC identifies a shared role for HLA-DRB1*01:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis

Philippe Goyette; Gabrielle Boucher; Dermot Mallon; Eva Ellinghaus; Luke Jostins; Hailiang Huang; Stephan Ripke; Elena Gusareva; Vito Annese; Stephen L. Hauser; Jorge R. Oksenberg; Ingo Thomsen; Stephen Leslie; Mark J. Daly; Kristel Van Steen; Richard H. Duerr; Jeffrey C. Barrett; Dermot P. McGovern; L. Philip Schumm; James A. Traherne; Mary Carrington; Vasilis Kosmoliaptsis; Tom H. Karlsen; Andre Franke; John D. Rioux

Genome-wide association studies of the related chronic inflammatory bowel diseases (IBD) known as Crohns disease and ulcerative colitis have shown strong evidence of association to the major histocompatibility complex (MHC). This region encodes a large number of immunological candidates, including the antigen-presenting classical human leukocyte antigen (HLA) molecules. Studies in IBD have indicated that multiple independent associations exist at HLA and non-HLA genes, but they have lacked the statistical power to define the architecture of association and causal alleles. To address this, we performed high-density SNP typing of the MHC in >32,000 individuals with IBD, implicating multiple HLA alleles, with a primary role for HLA-DRB1*01:03 in both Crohns disease and ulcerative colitis. Noteworthy differences were observed between these diseases, including a predominant role for class II HLA variants and heterozygous advantage observed in ulcerative colitis, suggesting an important role of the adaptive immune response in the colonic environment in the pathogenesis of IBD.


PLOS Genetics | 2013

Deep Resequencing of GWAS Loci Identifies Rare Variants in CARD9, IL23R and RNF186 That Are Associated with Ulcerative Colitis

Mélissa Beaudoin; Philippe Goyette; Gabrielle Boucher; Ken Sin Lo; Manuel A. Rivas; Christine Stevens; Azadeh Alikashani; Martin Ladouceur; David Ellinghaus; Leif Törkvist; Gautam Goel; Caroline Lagacé; Vito Annese; Alain Bitton; Jakob Begun; S R Brant; Francesca Bresso; Judy H. Cho; Richard H. Duerr; Jonas Halfvarson; Dermot P. McGovern; Graham L. Radford-Smith; Stefan Schreiber; Philip Schumm; Yashoda Sharma; Mark S. Silverberg; Rinse K. Weersma; Mauro D'Amato; Severine Vermeire; Andre Franke

Genome-wide association studies and follow-up meta-analyses in Crohns disease (CD) and ulcerative colitis (UC) have recently identified 163 disease-associated loci that meet genome-wide significance for these two inflammatory bowel diseases (IBD). These discoveries have already had a tremendous impact on our understanding of the genetic architecture of these diseases and have directed functional studies that have revealed some of the biological functions that are important to IBD (e.g. autophagy). Nonetheless, these loci can only explain a small proportion of disease variance (∼14% in CD and 7.5% in UC), suggesting that not only are additional loci to be found but that the known loci may contain high effect rare risk variants that have gone undetected by GWAS. To test this, we have used a targeted sequencing approach in 200 UC cases and 150 healthy controls (HC), all of French Canadian descent, to study 55 genes in regions associated with UC. We performed follow-up genotyping of 42 rare non-synonymous variants in independent case-control cohorts (totaling 14,435 UC cases and 20,204 HC). Our results confirmed significant association to rare non-synonymous coding variants in both IL23R and CARD9, previously identified from sequencing of CD loci, as well as identified a novel association in RNF186. With the exception of CARD9 (OR = 0.39), the rare non-synonymous variants identified were of moderate effect (OR = 1.49 for RNF186 and OR = 0.79 for IL23R). RNF186 encodes a protein with a RING domain having predicted E3 ubiquitin-protein ligase activity and two transmembrane domains. Importantly, the disease-coding variant is located in the ubiquitin ligase domain. Finally, our results suggest that rare variants in genes identified by genome-wide association in UC are unlikely to contribute significantly to the overall variance for the disease. Rather, these are expected to help focus functional studies of the corresponding disease loci.

Collaboration


Dive into the Dermot P. McGovern's collaboration.

Top Co-Authors

Avatar

Stephan R. Targan

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Talin Haritunians

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Marla Dubinsky

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Gil Y. Melmed

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Ippoliti

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

David Q. Shih

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dalin Li

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kent D. Taylor

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Phillip Fleshner

Cedars-Sinai Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge