Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Deron W. Jones is active.

Publication


Featured researches published by Deron W. Jones.


Circulation | 2003

L-4F, an Apolipoprotein A-1 Mimetic, Dramatically Improves Vasodilation in Hypercholesterolemia and Sickle Cell Disease

Jingsong Ou; Zhijun Ou; Deron W. Jones; Sandra L. Holzhauer; Ossama A. Hatoum; Allan W. Ackerman; Dorothee Weihrauch; David D. Gutterman; Karen S. Guice; Keith T. Oldham; Cheryl A. Hillery; Kirkwood A. Pritchard

Background—Hypercholesterolemia and sickle cell disease (SCD) impair endothelium-dependent vasodilation by dissimilar mechanisms. Hypercholesterolemia impairs vasodilation by a low-density lipoprotein (LDL)–dependent mechanism. SCD has been characterized as a chronic state of inflammation in which xanthine oxidase (XO) from ischemic tissues increases vascular superoxide anion (O2·−) generation. Recent reports indicate that apolipoprotein (apo) A-1 mimetics inhibit atherosclerosis in LDL receptor–null (Ldlr−/−) mice fed Western diets. Here we hypothesize that L-4F, an apoA-1 mimetic, preserves vasodilation in hypercholesterolemia and SCD by decreasing mechanisms that increase O2·− generation. Methods and Results—Arterioles were isolated from hypercholesterolemic Ldlr−/− mice and from SCD mice that were treated with either saline or L-4F (1 mg/kg per day). Vasodilation in response to acetylcholine was determined by videomicroscopy. Effects of L-4F on LDL-induced increases in endothelium-dependent O2·− generation were determined on arterial segments via the hydroethidine assay and on stimulated endothelial cell cultures via superoxide dismutase–inhibitable ferricytochrome c reduction. Effects of L-4F on XO bound to pulmonary arterioles and content in livers of SCD mice were determined by immunofluorescence. Hypercholesterolemia impaired vasodilation in Ldlr−/− mice, which L-4F dramatically improved. L-4F inhibited LDL-induced increases in O2·− in arterial segments and in stimulated cultures. SCD impaired vasodilation, increased XO bound to pulmonary endothelium, and decreased liver XO content. L-4F dramatically improved vasodilation, decreased XO bound to pulmonary endothelium, and increased liver XO content compared with levels in untreated SCD mice. Conclusions—These data show that L-4F protects endothelium-dependent vasodilation in hypercholesterolemia and SCD. Our findings suggest that L-4F restores vascular endothelial function in diverse models of disease and may be applicable to treating a variety of vascular diseases.


Shock | 2006

ENDOTHELIUM-DERIVED MICROPARTICLES INDUCE ENDOTHELIAL DYSFUNCTION AND ACUTE LUNG INJURY

John C. Densmore; Paul Signorino; Jingsong Ou; Ossama A. Hatoum; J. Jordi Rowe; Yang Shi; Sushma Kaul; Deron W. Jones; Robert E. Sabina; Kirkwood A. Pritchard; Karen S. Guice; Keith T. Oldham

ABSTRACT Acute lung injury (ALI) carries a high mortality in critically ill patients. Recent reports correlate elevated concentrations of endothelium-derived microparticles (EMPs) with diseases of endothelial dysfunction. Many of these diseases have ALI sequelae. We hypothesize that EMPs contribute to endothelial cell (EC) dysfunction and development of ALI. To test this hypothesis, we treated isolated vessels with EMPs and examined changes in vasodilation. Endothelial cell cultures were incubated with EMPs and examined for changes in stimulated nitric oxide (•NO) production and nitric oxide synthase (eNOS) activation. Finally, EMPs were injected into rats and mice and lungs examined for ALI. In both mouse and human ex vivo vessel preparations, we found a marked attenuation of endothelium-mediated vasodilation after EMP treatment (4 × 106/mL). This dysfunction was not corrected by pretreatment of EMPs with free radical scavengers. Coincubation of EMPs with EC cultures yielded a three-fold reduction in A23187-stimulated •NO release. Western analysis of these cells showed a corresponding decrease in eNOS phosphorylation at Ser1179 and a decrease in hsp90 association. Measurements of lung permeability, myeloperoxidase activity, and histology of EMPs-treated Brown Norway rats demonstrated pulmonary edema, neutrophil recruitment, and compromise of the endothelial-alveolar barrier as a second hit phenomenon. In C57BL/6 mice, exogenous EMPs caused a significant rise in pulmonary capillary permeability both as a primary and secondary injury. These findings demonstrate EMPs are capable of inducing significant lung injury at pathophysiologically relevant concentrations. Endothelium-derived microparticles inhibit endothelium-mediated vasodilation and •NO generation from eNOS. Once elucidated, EMP mechanisms of inducing ALI and endothelial dysfunction may present new therapeutic targets.


Journal of Biological Chemistry | 2007

A Heat Shock Protein 90 Binding Domain in Endothelial Nitric-oxide Synthase Influences Enzyme Function

Hao Xu; Yang Shi; Jingli Wang; Deron W. Jones; Dorothee Weilrauch; Rong Ying; Basam Wakim; Kirkwood A. Pritchard

Previous reports suggest heat shock protein 90 (hsp90) associates with endothelial nitric-oxide synthase (eNOS) to increase nitric oxide (·NO) generation. Ansamycin inhibition of chaperone-dependent activity increases eNOS generation of superoxide anion (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{{\bar{{\cdot}}}}\) \end{document}) upon enzyme activation. In the present study we identify where hsp90 binds to eNOS using overlapping decoy peptides based on the amino acid (aa) sequence of eNOS (291–420). B1, B2, and B3 peptides inhibited hsp90 association with eNOS in cell lysates from proliferating bovine aortic endothelial cells. B2 (aa 301–320), common to both B1 and B3, decreased stimulated ·NO production and hsp90 association in bovine aortic endothelial cells. The B2/B3 peptide was redesigned to TSB2 that includes a TAT protein transduction domain and shortened to 14 aa. TSB2 impaired vasodilation of isolated facialis arteries in vitro and in vivo and increased eNOS-dependent \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{{\bar{{\cdot}}}}\) \end{document} generation in native endothelial cells on mouse aortas, whereas a control peptide, TSB(Ctr), which has the four glutamic acids in TSB2 substituted with alanine, showed no such effects. Site-directed mutagenesis of eNOS at 310, 314, 318, and 323 Glu to Ala yields an eNOS mutant that exhibited reduced hsp90 association and generated \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{{\bar{{\cdot}}}}\) \end{document} rather than ·NO upon activation. Together, these data demonstrate that hsp90 associates with eNOS at aa 310–323. Moreover, a decoy peptide based on this sequence is sufficient to displace hsp90 from eNOS and uncouple eNOS activity from ·NO generation. Thus, Glu-310, Glu-314, Glu-318, and Glu-323 in eNOS, although each does not do much by itself, synergistically they increase “cooperativity” in the association step that is critical for maintaining hsp90-eNOS interactions and promoting coupled eNOS activity. Such chaperone-dependent signaling may play an important role in modulating the balance of ·NO and \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{{\bar{{\cdot}}}}\) \end{document} generation from eNOS and, therefore, vascular function.


Journal of Lipid Research | 2010

Genetic deletion of apolipoprotein A-I increases airway hyperresponsiveness, inflammation, and collagen deposition in the lung.

Weiling Wang; Hao Xu; Yang Shi; S.D. Nandedkar; Hao Zhang; Haiqing Gao; Thom R. Feroah; Dorothee Weihrauch; Marie L. Schulte; Deron W. Jones; Jason A. Jarzembowski; Mary G. Sorci-Thomas; Kirkwood A. Pritchard

The relationship between high-density lipoprotein and pulmonary function is unclear. To determine mechanistic relationships we investigated the effects of genetic deletion of apolipoprotein A-I (apoA-I) on plasma lipids, paraoxonase (PON1), pro-inflammatory HDL (p-HDL), vasodilatation, airway hyperresponsiveness and pulmonary oxidative stress, and inflammation. ApoA-I null (apoA-I−/−) mice had reduced total and HDL cholesterol but increased pro-inflammatory HDL compared with C57BL/6J mice. Although PON1 protein was increased in apoA-I−/− mice, PON1 activity was decreased. ApoA-I deficiency did not alter vasodilatation of facialis arteries, but it did alter relaxation responses of pulmonary arteries. Central airway resistance was unaltered. However, airway resistance mediated by tissue dampening and elastance were increased in apoA-I−/− mice, a finding also confirmed by positive end-expiratory pressure (PEEP) studies. Inflammatory cells, collagen deposition, 3-nitrotyrosine, and 4-hydroxy-2-nonenal were increased in apoA-I−/− lungs but not oxidized phospholipids. Colocalization of 4-hydroxy-2-nonenal with transforming growth factor β-1 (TGFβ-1 was increased in apoA-I−/− lungs. Xanthine oxidase, myeloperoxidase and endothelial nitric oxide synthase were increased in apoA-I−/− lungs. Dichlorodihydrofluorescein-detectable oxidants were increased in bronchoalveolar lavage fluid (BALF) in apoA-I−/− mice. In contrast, BALF nitrite+nitrate levels were decreased in apoA-I−/− mice. These data demonstrate that apoA-I plays important roles in limiting pulmonary inflammation and oxidative stress, which if not prevented, will decrease pulmonary artery vasodilatation and increase airway hyperresponsiveness.


Blood | 2008

Vascular dysfunction in a murine model of severe hemolysis.

Anne Frei; Yihe Guo; Deron W. Jones; Kirkwood A. Pritchard; Karen A. Fagan; Neil Hogg; Nancy J. Wandersee

Spectrin is the backbone of the erythroid cytoskeleton; sph/sph mice have severe hereditary spherocytosis (HS) because of a mutation in the murine erythroid alpha-spectrin gene. sph/sph mice have a high incidence of thrombosis and infarction in multiple tissues, suggesting significant vascular dysfunction. In the current study, we provide evidence for both pulmonary and systemic vascular dysfunction in sph/sph mice. We found increased levels of soluble cell adhesion molecules in sph/sph mice, suggesting activation of the vascular endothelium. We hypothesized that plasma hemoglobin released by intravascular hemolysis initiates endothelial injury through nitric oxide (NO) scavenging and oxidative damage. Likewise, electron paramagnetic resonance spectroscopy showed that plasma hemoglobin is much greater in sph/sph mice. Moreover, plasma from sph/sph mice had significantly higher oxidative potential. Finally, xanthine oxidase, a potent superoxide generator, is decreased in subpopulations of liver hepatocytes and increased on liver endothelium in sph/sph mice. These results indicate that vasoregulation is abnormal, and NO-based vasoregulatory mechanisms particularly impaired, in sph/sph mice. Together, these data indicate that sph/sph mice with severe HS have increased plasma hemoglobin and NO scavenging capacity, likely contributing to aberrant vasoregulation and initiating oxidative damage.


Journal of Surgical Research | 2010

Mesenteric Nitric Oxide and Superoxide Production in Experimental Necrotizing Enterocolitis

Jill S. Whitehouse; Hao Xu; Yang Shi; LeAnne Noll; Sushma Kaul; Deron W. Jones; Kirkwood A. Pritchard; Keith T. Oldham; David M. Gourlay

BACKGROUND A proposed mechanism of intestinal injury in necrotizing enterocolitis (NEC) involves vascular dysfunction through altered nitric oxide synthase (NOS) activity. We hypothesize that this dysfunction results in an imbalance in nitric oxide (*NO) and superoxide (O(2)(*-)) production by the intestinal vascular endothelium, which contributes to the intestinal injury seen in NEC. MATERIALS AND METHODS Neonatal rat pups were divided into two groups. Control pups were breast fed and housed with their mother. Experimental NEC pups were housed separately and either exposed to formula feeding and 5% to 10% hypoxia alone (FF/H) or with the addition of lipopolysaccharide (FF/H/LPS). Mesenteries from each group were analyzed for *NO and O(2)(*-) production with and without NOS inhibition by N(G)-monomethyl-L-arginine (L-NMMA). Western blot analysis for eNOS, phosphorylated eNOS (phospho-eNOS), and inducible NOS (iNOS) was performed, and each terminal ileum was graded for intestinal injury by histology. RESULTS Histology revealed mild intestinal injury (grade 1-2 on a 4-point scale) in the FF/H group and severe injury (grade 3-4) in the FF/H/LPS group. The FF/H cohort had significantly increased *NO and lower O(2)(*-) production, while the FF/H/LPS group shifted to significantly decreased *NO and increased O(2)(*-) production. L-NMMA inhibited >50% of O(2)(*-) production in all three groups but only inhibited *NO production in control and FF/H pups. Western blot analysis revealed increased levels of phospho-eNOS in FF/H pups and increased iNOS in FF/H/LPS pups. CONCLUSIONS This study demonstrates in the progression of NEC, intestinal ischemia is associated with a shift from *NO to O(2)(*-) production, which is NOS-dependent. Potentially greater injury results from impaired vasodilatation and over-production of reactive oxygen species.


Journal of Lipid Research | 2013

Inhibition of myeloperoxidase decreases vascular oxidative stress and increases vasodilatation in sickle cell disease mice

Hao Zhang; Hao Xu; Dorothee Weihrauch; Deron W. Jones; Xigang Jing; Yang Shi; David M. Gourlay; Keith T. Oldham; Cheryl A. Hillery; Kirkwood A. Pritchard

Activated leukocytes and polymorphonuclear neutrophils (PMN) release myeloperoxidase (MPO), which binds to endothelial cells (EC), is translocated, and generates oxidants that scavenge nitric oxide (NO) and impair EC function. To determine whether MPO impairs EC function in sickle cell disease (SCD), control (AA) and SCD mice were treated with N-acetyl-lysyltyrosylcysteine-amide (KYC). SCD humans and mice have high plasma MPO and soluble L-selectin (sL-selectin). KYC had no effect on MPO but decreased plasma sL-selectin and malondialdehyde in SCD mice. MPO and 3-chlorotyrosine (3-ClTyr) were increased in SCD aortas. KYC decreased MPO and 3-ClTyr in SCD aortas to the levels in AA aortas. Vasodilatation in SCD mice was impaired. KYC increased vasodilatation in SCD mice more than 2-fold, to ∼60% of levels in AA mice. KYC inhibited MPO-dependent 3-ClTyr formation in EC proteins. SCD mice had high plasma alanine transaminase (ALT), which tended to decrease in KYC-treated SCD mice (P = 0.07). KYC increased MPO and XO/XDH and decreased 3-ClTyr and 3-nitrotyrosine (3-NO2Tyr) in SCD livers. These data support the hypothesis that SCD increases release of MPO, which generates oxidants that impair EC function and injure livers. Inhibiting MPO is an effective strategy for decreasing oxidative stress and liver injury and restoring EC function in SCD.


Journal of Lipid Research | 2013

N-acetyl lysyltyrosylcysteine amide inhibits myeloperoxidase, a novel tripeptide inhibitor

Hao Zhang; Xigang Jing; Yang Shi; Hao Xu; Jianhai Du; Tongju Guan; Dorothee Weihrauch; Deron W. Jones; Weiling Wang; David M. Gourlay; Keith T. Oldham; Cheryl A. Hillery; Kirkwood A. Pritchard

Myeloperoxidase (MPO) plays important roles in disease by increasing oxidative and nitrosative stress and oxidizing lipoproteins. Here we report N-acetyl lysyltyrosylcysteine amide (KYC) is an effective inhibitor of MPO activity. We show KYC inhibits MPO-mediated hypochlorous acid (HOCl) formation and nitration/oxidation of LDL. Disulfide is the major product of MPO-mediated KYC oxidation. KYC (⩽4,000 μM) does not induce cytotoxicity in bovine aortic endothelial cells (BAECs). KYC inhibits HOCl generation by phorbol myristate acetate (PMA)-stimulated neutrophils and human promyelocytic leukemia (HL-60) cells but not superoxide generation by PMA-stimulated HL-60 cells. KYC inhibits MPO-mediated HOCl formation in BAEC culture and protects BAECs from MPO-induced injury. KYC inhibits MPO-mediated lipid peroxidation of LDL whereas tyrosine (Tyr) and tryptophan (Trp) enhance oxidation. KYC is unique as its isomers do not inhibit MPO activity, or are much less effective. Ultraviolet-visible spectral studies indicate KYC binds to the active site of MPO and reacts with compounds I and II. Docking studies show the Tyr of KYC rests just above the heme of MPO. Interestingly, KYC increases MPO-dependent H2O2 consumption. These data indicate KYC is a novel and specific inhibitor of MPO activity that is nontoxic to endothelial cell cultures. Accordingly, KYC may be useful for treating MPO-mediated vascular disease.


Blood | 2014

Sickle cell disease increases high mobility group box 1: a novel mechanism of inflammation

Hao Xu; Nancy J. Wandersee; Yihe Guo; Deron W. Jones; Sandra L. Holzhauer; Madelyn S. Hanson; Evans Machogu; David C. Brousseau; Neil Hogg; John C. Densmore; Sushma Kaul; Cheryl A. Hillery; Kirkwood A. Pritchard

High mobility group box 1 (HMGB1) is a chromatin-binding protein that maintains DNA structure. On cellular activation or injury, HMGB1 is released from activated immune cells or necrotic tissues and acts as a damage-associated molecular pattern to activate Toll-like receptor 4 (TLR4). Little is known concerning HMGB1 release and TLR4 activity and their role in the pathology of inflammation of sickle cell disease (SCD). Circulating HMGB1 levels were increased in both humans and mice with SCD compared with controls. Furthermore, sickle plasma increased HMGB1-dependent TLR4 activity compared with control plasma. HMGB1 levels were further increased during acute sickling events (vasoocclusive crises in humans or hypoxia/reoxygenation injury in mice). Anti-HMGB1 neutralizing antibodies reduced the majority of sickle plasma-induced TLR4 activity both in vitro and in vivo. These findings show that HMGB1 is the major TLR4 ligand in SCD and likely plays a critical role in SCD-mediated inflammation.


Photochemistry and Photobiology | 2013

Transient repetitive exposure to low level light therapy enhances collateral blood vessel growth in the ischemic hindlimb of the tight skin mouse.

Maria Zaidi; John G. Krolikowki; Deron W. Jones; Kirkwood A. Pritchard; S.D. Nandedkar; Nicole L. Lohr; Paul S. Pagel; Dorothee Weihrauch

The tight skin mouse (Tsk−/+) is a model of scleroderma characterized by impaired vasoreactivity, increased oxidative stress, attenuated angiogenic response to VEGF and production of the angiogenesis inhibitor angiostatin. Low‐level light therapy (LLLT) stimulates angiogenesis in myocardial infarction and chemotherapy‐induced mucositis. We hypothesize that repetitive LLLT restores vessel growth in the ischemic hindlimb of Tsk−/+ mice by attenuating angiostatin and enhancing angiomotin effects in vivo. C57Bl/6J and Tsk−/+ mice underwent ligation of the femoral artery. Relative blood flow to the foot was measured using a laser Doppler imager. Tsk−/+ mice received LLLT (670 nm, 50 mW cm−2, 30 J cm−2) for 10 min per day for 14 days. Vascular density was determined using lycopersicom lectin staining. Immunofluorescent labeling, Western blot analysis and immunoprecipitation were used to determine angiostatin and angiomotin expression. Recovery of blood flow to the ischemic limb was reduced in Tsk−/+ compared with C57Bl/6 mice 2 weeks after surgery. LLLT treatment of Tsk−/+ mice restored blood flow to levels observed in C57Bl/6 mice. Vascular density was decreased, angiostatin expression was enhanced and angiomotin depressed in the ischemic hindlimb of Tsk−/+ mice. LLLT treatment reversed these abnormalities. LLLT stimulates angiogenesis by increasing angiomotin and decreasing angiostatin expression in the ischemic hindlimb of Tsk−/+ mice.

Collaboration


Dive into the Deron W. Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorothee Weihrauch

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Hao Xu

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Keith T. Oldham

Children's Hospital of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Cheryl A. Hillery

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Sushma Kaul

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Yang Shi

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Nancy J. Wandersee

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Neil Hogg

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Sandra L. Holzhauer

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge